motion estimation for video coding
play

Motion Estimation for Video Coding Motion-Compensated Prediction - PowerPoint PPT Presentation

Motion Estimation for Video Coding Motion-Compensated Prediction Bit Allocation Motion Models Motion Estimation Efficiency of Motion Compensation Techniques T. Wiegand / B. Girod: EE398A Image and Video Compression Motion


  1. Motion Estimation for Video Coding  Motion-Compensated Prediction  Bit Allocation  Motion Models  Motion Estimation  Efficiency of Motion Compensation Techniques T. Wiegand / B. Girod: EE398A Image and Video Compression Motion estimation no. 1

  2. Hybrid Video Encoder Coder Control Control Data [ , , ] s x y t [ , , ] u x y t Intra-Frame DCT DCT Coder - Coefficients Decoder Intra-Frame Decoder ' [ , , ] u x y t ' [ , , ] s x y t 0 Motion- Compensated Intra/Inter Predictor ˆ [ , , ] s x y t Motion Data Motion Estimator T. Wiegand / B. Girod: EE398A Image and Video Compression Motion estimation no. 2

  3. Motion-Compensated Prediction Previous frame Stationary background Moving  t object Current frame x y time t   d   Displaced x   d object   y Prediction for the luminance signal s [ x,y,t ] within the moving object:       ˆ [ , , ] ( , , ) s x y t s x d y d t t x y T. Wiegand / B. Girod: EE398A Image and Video Compression Motion estimation no. 3

  4. Motion-Compensated Prediction: Example Partition of frame 2 into blocks Frame 1 s [ x,y,t-1 ] (previous) Frame 2 s [ x,y,t ] (current) (schematic) Size of Blocks Accuracy of Motion Vectors Frame 2 with Difference between motion- Referenced blocks in frame 1 displacement vectors compensated prediction and current frame u [ x,y,t ] T. Wiegand / B. Girod: EE398A Image and Video Compression Motion estimation no. 4

  5. Motion Models  Motion in 3-D space corresponds to displacements in the image plane  Motion compensation in the image plane is conducted to provide a prediction signal for efficient video compression  Efficient motion-compensated prediction often uses side information to transmit the displacements  Displacements must be efficiently represented for video compression  Motion models relate 3-D motion to displacements assuming reasonable restrictions of the motion and objects in the 3-D world         Motion Model ( , , ), ( , , ) d x x f a x y d y y f b x y x x y y , x y : location in previous image   , : location in current image x y , a b : vector of motion coefficients , : displacements d d x y T. Wiegand / B. Girod: EE398A Image and Video Compression Motion estimation no. 5

  6. Representation of Video Signal Decoded video signal is given as     ˆ [ , , ] [ , , ] [ , , ] s x y t s x y t u x y t Motion-compensated Prediction residual signal prediction signal  1 M         ˆ  j   [ , , ] ( , , ) s x y t s x d y d t t ( , ) ( , ) u x y c x y x y j  0 j   1 1 N N         ( , ), ( , ) d a x y d b x y x i i y i i   0 0 i i Transmitted residual parameters Transmitted motion parameters   ( ), ( ,...) c c R u f c    0 ( , ), ( ,...), ( ,...) R m f a b a a b b 0 0 T. Wiegand / B. Girod: EE398A Image and Video Compression Motion estimation no. 6

  7. Rate-Constrained Motion Estimation Motion Bit-rate vector rate D R m Prediction error rate R u Displacement error variance dD dD  Optimum trade-off:    , R R R m u dR dR m u  Displacement error variance can be influenced via • Block-size, quantization of motion parameters • Choice of motion model T. Wiegand / B. Girod: EE398A Image and Video Compression Motion estimation no. 7

  8. Lagrangian Optimization in Video Coding  A number of interactions are often neglected • Temporal dependency due to DPCM loop • Spatial dependency of coding decisions • Conditional entropy coding  Rate-Constrained Motion Estimation [Sullivan, Baker 1991]:   min D R m m m Distortion after Number of bits Lagrange motion compensation for motion vector parameter  Rate-Constrained Mode Decision [Wiegand, et al. 1996]:   min D R Distortion after Number of bits Lagrange reconstruction for coding mode parameter T. Wiegand / B. Girod: EE398A Image and Video Compression Motion estimation no. 8

  9. Motion Models   1 1 N N         ( , ), ( , ) d a x y d b x y x i i y i i   0 0 i i    Translational motion model 0 , d a d b 0 x y  4-Parameter motion model: translation, zoom (isotropic Scaling),    rotation in image plane d a a x a y 0 1 2 x    d b a x a y 0 2 1 y    d a a x a y  Affine motion model: 0 1 2 x    d b b x b y 0 1 2 y       2 2  Parabolic motion model d a a x a y a x a y a xy 0 1 3 2 6 5 x       2 2 d b b x b y b x b y b xy 0 1 3 2 6 5 x T. Wiegand / B. Girod: EE398A Image and Video Compression Motion estimation no. 9

  10. Impact of the Affine Parameters 150   100 d x a translation 50 0 y 0 -150 -100 -50 0 50 100 150 -50 -100 -150 x 150 150 100 100   d x a x scaling 50 50 1 y 0 y 0 -150 -100 -50 0 50 100 150 -150 -100 -50 0 50 100 150 -50 -50 -100 -100 -150 -150 x x 150   100 d x a y sheering 50 3 y 0 -150 -100 -50 0 50 100 150 -50 -100 -150 x T. Wiegand / B. Girod: EE398A Image and Video Compression Motion estimation no. 10

  11. Impact of the Parabolic Parameters 150 d x  100 2 a 2 x 50 y 0 -150 -100 -50 0 50 100 150 -50 -100 -150 x 150 150 d x  100 100 2 a 6 y 50 50 y 0 y 0 -150 -100 -50 0 50 100 150 -150 -100 -50 0 50 100 150 -50 -50 -100 -100 -150 -150 x x 150 100  d x a xy 50 5 y 0 -150 -100 -50 0 50 100 150 -50 -100 -150 x T. Wiegand / B. Girod: EE398A Image and Video Compression Motion estimation no. 11

  12. Differential Motion Estimation  Assume small displacements d x ,d y :   ˆ ( , , ) ( , , ) ( , , , , ) u x y t s x y t s x y t d d x y         ( , , ) ( , , ) s x y t t s x y t t          ( , , ) ( , , ) s x y t s x y t t d d   x y x y Horizontal and vertical Displace frame difference gradient of image signal S  Aperture problem: several observations required  Inaccurate for displacements > 0.5 pel  multigrid methods, iteration  Minimize By Bx  2 min ( , , ) u x y t   1 1 y x T. Wiegand / B. Girod: EE398A Image and Video Compression Motion estimation no. 12

  13. Gradient-Based Affine Refinement  Displacement vector field is represented as     x a a x a y 1 2 3  Combination     y b b x b y 1 2 3     s s            ( , , ) ( , , ) ( , , ) ( ) ( ) u x y t s x y t s x y t t a a x a y b b x b y  1 2 3  1 2 3 x y   a   1 yields a system of linear equations:   a 2                 s s s s s s a         3 , , , , , , u s s x y x y         b     x x x y y y 1   b   2     b 3  System can be solved using, e.g., pseudo-inverse, By by minimizing Bx  2 arg min ( , , ) u x y t , , , , ,   a a a b b b 1 1 y x 1 2 3 1 2 3 T. Wiegand / B. Girod: EE398A Image and Video Compression Motion estimation no. 13

  14. Block-matching Algorithm • Subdivide current frame search range in into blocks. previous frame S k  1 • Find one displacement vector for each block. • Within a search range, find a “best match” that minimizes an error measure. • Intelligent search strategies can reduce computation. block of current S k frame T. Wiegand / B. Girod: EE398A Image and Video Compression Motion estimation no. 14

  15. Block-matching Algorithm Current Frame Previous Frame Measurement window is Block of pixels is selected compared with a shifted block as a measurement window of pixels in the other image, to determine the best match T. Wiegand / B. Girod: EE398A Image and Video Compression Motion estimation no. 15

  16. Block-matching Algorithm Current Frame Previous Frame . . . process repeated for another block. T. Wiegand / B. Girod: EE398A Image and Video Compression Motion estimation no. 16

  17. Error Measures for Block-matching  Mean squared error (sum of squared errors) By Bx         2 ( , ) [ ( , , ) ( , , )] SSD d d s x y t s x d y d t t x y x y   1 1 y x  Sum of absolute differences By Bx         ( , ) | ( , , ) ( , , ) | SAD d d s x y t s x d y d t t x y x y   1 1 y x  Approximately same performance  SAD less complex for some architectures T. Wiegand / B. Girod: EE398A Image and Video Compression Motion estimation no. 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend