simons type formulas for submanifolds with parallel mean
play

Simons type formulas for submanifolds with parallel mean curvature - PowerPoint PPT Presentation

Simons type formulas for submanifolds with parallel mean curvature in product spaces and applications D OREL F ETCU XIV TH I NTERNATIONAL C ONFERENCE ON G EOMETRY , I NTEGRABILITY AND Q UANTIZATION June 813, 2012 Varna, Bulgaria References D.


  1. Simons type formulas for submanifolds with parallel mean curvature in product spaces and applications D OREL F ETCU XIV TH I NTERNATIONAL C ONFERENCE ON G EOMETRY , I NTEGRABILITY AND Q UANTIZATION June 8–13, 2012 Varna, Bulgaria

  2. References D. Fetcu and H. Rosenberg, Surfaces with parallel mean curvature in S 3 × R and H 3 × R , Michigan Math. J., to appear, arXiv:math.DG/1103.6254v1 . D. Fetcu, C. Oniciuc, and H. Rosenberg, Biharmonic submanifolds with parallel mean curvature in S n × R , J. Geom. Anal., to appear, arXiv:math.DG/1109.6138v1 . D. Fetcu and H. Rosenberg, On complete submanifolds with parallel mean curvature in product spaces , Rev. Mat. Iberoam., to appear, arXiv:math.DG/1112.3452v1 .

  3. Using Simons inequalities to study minimal, cmc and pmc submanifolds ◮ 1968 - J. Simons - a formula for the Laplacian of the second fundamental form of a submanifold in a Riemannian manifold

  4. Using Simons inequalities to study minimal, cmc and pmc submanifolds ◮ 1968 - J. Simons - a formula for the Laplacian of the second fundamental form of a submanifold in a Riemannian manifold - for a minimal hypersurface Σ m in S m + 1 this formula is 1 2 ∆ | A | 2 = | ∇ A | 2 + | A | 2 ( m −| A | 2 ) ≥ | A | 2 ( m −| A | 2 ) where ∇ and A are defined by ¯ ∇ X V = − A V X + ∇ ⊥ ¯ ∇ X Y = ∇ X Y + σ ( X , Y ) and X V

  5. - for a minimal submanifold with arbitrary codimension in S n : Theorem (Simons - 1968) Let Σ m be a closed minimal submanifold in S n . Then | A | 2 − m ( n − m ) � � � | A | 2 ≥ 0 . 2 n − 2 m − 1 Σ m

  6. - for a minimal submanifold with arbitrary codimension in S n : Theorem (Simons - 1968) Let Σ m be a closed minimal submanifold in S n . Then | A | 2 − m ( n − m ) � � � | A | 2 ≥ 0 . 2 n − 2 m − 1 Σ m Corollary Let Σ m be a closed minimal submanifold in S n with m ( n − m ) | A | 2 ≤ 2 n − 2 m − 1 . Then, either Σ m is totally geodesic or | A | 2 = m ( n − m ) 2 n − 2 m − 1 .

  7. Definition If the mean curvature vector field H = 1 m trace σ of a submanifold Σ m in a Riemannian manifold is parallel in the normal bundle, i.e. ∇ ⊥ H = 0 , then Σ m is called a pmc submanifold. If | H | = constant , then Σ m is a cmc submanifold.

  8. Definition If the mean curvature vector field H = 1 m trace σ of a submanifold Σ m in a Riemannian manifold is parallel in the normal bundle, i.e. ∇ ⊥ H = 0 , then Σ m is called a pmc submanifold. If | H | = constant , then Σ m is a cmc submanifold. ◮ 1969 - K. Nomizu, B. Smyth; 1973 - B. Smyth - Simons type formula for cmc hypersurfaces and, in general, pmc submanifolds in a space form ◮ 1971 - J. Erbacher - Simons type formula for pmc submanifolds in a space form: | ∇ ∗ A | 2 + cm {| A | 2 − m | H | 2 } 1 2 ∆ | A | 2 = + ∑ n + 1 α , β = m + 1 { ( trace A β )( trace ( A 2 α A β )) + trace [ A α , A β ] 2 − ( trace ( A α A β )) 2 } ,

  9. ◮ 1977 - S.-Y. Cheng, S.-T. Yau - a general Simons type equation for operators S , acting on a submanifold of a Riemannian manifold and satisfying ( ∇ X S ) Y = ( ∇ Y S ) X ◮ 1970 - S.-S. Chern, M. do Carmo, S. Kobayashi; 1994 - H. Alencar, M. do Carmo - gap theorems for minimal hypersurfaces and cmc hypersurfaces, respectively, in S n ( c ) ◮ 1994 - W. Santos - a gap theorem for pmc submanifolds in S n ( c ) ◮ other studies on pmc submanifolds in space forms: - 1984, 1993, 2005, 2010, 2011 - H.-W. Xu et al. - 2001 - Q. M. Cheng, K. Nonaka - 2009 - K. Araújo, K. Tenenblat ◮ 2010 - M. Batista - Simons type formulas for cmc surfaces in M 2 ( c ) × R

  10. A Simons type formula for submanifolds in M n ( c ) × R Theorem (F., Oniciuc, Rosenberg - 2011) Let Σ m be a submanifold of M n ( c ) × R , with mean curvature vector field H and shape operator A . If V is a normal vector field, parallel in the normal bundle, with trace A V = constant , then | ∇ A V | 2 + c { ( m −| T | 2 ) | A V | 2 − 2 m | A V T | 2 1 2 ∆ | A V | 2 = + 3 ( trace A V ) � A V T , T �− m ( trace A V ) � H , N �� V , N � + m ( trace ( A N A V )) � V , N �− ( trace A V ) 2 } + ∑ n + 1 α = m + 1 { ( trace A α )( trace ( A 2 V A α )) − ( trace ( A V A α )) 2 } , where { E α } n + 1 α = m + 1 is a local orthonormal frame field in the normal bundle, and T and N are the tangent and normal part, respectively, of the unit vector ξ tangent to R .

  11. Sketch of the proof. 2 ∆ | A V | 2 = | ∇ A V | 2 + � trace ∇ 2 A V , A V � ◮ Weitzenböck formula: 1

  12. Sketch of the proof. 2 ∆ | A V | 2 = | ∇ A V | 2 + � trace ∇ 2 A V , A V � ◮ Weitzenböck formula: 1 ◮ C ( X , Y ) = ( ∇ 2 A V )( X , Y ) = ∇ X ( ∇ Y A V ) − ∇ ∇ X Y A V ◮ consider an orthonormal basis { e i } m i = 1 in T p Σ m , p ∈ Σ m , extend e i to vector fields E i in a neighborhood of p such that { E i } is a geodesic frame field around p , and denote X = E k m ( trace ∇ 2 A V ) X = ∑ C ( E i , E i ) X . i = 1

  13. ◮ Codazzi equation of Σ m : ( ∇ X A V ) Y = ( ∇ Y A V ) X + c � V , N � ( � Y , T � X −� X , T � Y )

  14. ◮ Codazzi equation of Σ m : ( ∇ X A V ) Y = ( ∇ Y A V ) X + c � V , N � ( � Y , T � X −� X , T � Y ) ◮ Ricci commutation formula: C ( X , Y ) = C ( Y , X )+[ R ( X , Y ) , A V ]

  15. ◮ Codazzi equation of Σ m : ( ∇ X A V ) Y = ( ∇ Y A V ) X + c � V , N � ( � Y , T � X −� X , T � Y ) ◮ Ricci commutation formula: C ( X , Y ) = C ( Y , X )+[ R ( X , Y ) , A V ] ◮ Codazzi equation + Ricci formula ⇒ C ( E i , E i ) X = ∇ X (( ∇ E i A V ) E i )+[ R ( E i , X ) , A V ] E i + c � A V E i , T � ( � E i , T � X −� X , T � E i ) − c � V , N � ( � A N E i , E i � X −� A N X , E i � E i )

  16. ◮ Codazzi equation of Σ m : ( ∇ X A V ) Y = ( ∇ Y A V ) X + c � V , N � ( � Y , T � X −� X , T � Y ) ◮ Ricci commutation formula: C ( X , Y ) = C ( Y , X )+[ R ( X , Y ) , A V ] ◮ Codazzi equation + Ricci formula ⇒ C ( E i , E i ) X = ∇ X (( ∇ E i A V ) E i )+[ R ( E i , X ) , A V ] E i + c � A V E i , T � ( � E i , T � X −� X , T � E i ) − c � V , N � ( � A N E i , E i � X −� A N X , E i � E i ) ◮ ∇ E i A V is symmetric + Codazzi eq. + trace A V = constant ⇒ ∑ m i = 1 ( ∇ E i A V ) E i = c ( m − 1 ) � V , N � T ◮ R ( X , Y ) Z = c {� Y , Z � X −� X , Z � Y −� Y , T �� Z , T � X + � X , T �� Z , T � Y + � X , Z �� Y , T � T −� Y , Z �� X , T � T } + ∑ n + 1 α = m + 1 {� A α Y , Z � A α X −� A α X , Z � A α Y } ,

  17. ◮ Codazzi equation of Σ m : ( ∇ X A V ) Y = ( ∇ Y A V ) X + c � V , N � ( � Y , T � X −� X , T � Y ) ◮ Ricci commutation formula: C ( X , Y ) = C ( Y , X )+[ R ( X , Y ) , A V ] ◮ Codazzi equation + Ricci formula ⇒ C ( E i , E i ) X = ∇ X (( ∇ E i A V ) E i )+[ R ( E i , X ) , A V ] E i + c � A V E i , T � ( � E i , T � X −� X , T � E i ) − c � V , N � ( � A N E i , E i � X −� A N X , E i � E i ) ◮ ∇ E i A V is symmetric + Codazzi eq. + trace A V = constant ⇒ ∑ m i = 1 ( ∇ E i A V ) E i = c ( m − 1 ) � V , N � T ◮ R ( X , Y ) Z = c {� Y , Z � X −� X , Z � Y −� Y , T �� Z , T � X + � X , T �� Z , T � Y + � X , Z �� Y , T � T −� Y , Z �� X , T � T } + ∑ n + 1 α = m + 1 {� A α Y , Z � A α X −� A α X , Z � A α Y } , ◮ Ricci eq. � R ⊥ ( X , Y ) V , U � = � [ A V , A U ] X , Y � + � ¯ R ( X , Y ) V , U � ⇒ [ A V , A U ] = 0 , ∀ U ∈ N Σ m

  18. pmc surfaces in M 3 ( c ) × R • Let Σ 2 be a non-minimal pmc surface in M 3 ( c ) × R • Consider the orthonormal frame field { E 3 = H | H | , E 4 } in the normal bundle ⇒ E 4 = parallel • φ 3 = A 3 −| H | I and φ 4 = A 4 • φ ( X , Y ) = σ ( X , Y ) −� X , Y � H = � φ 3 X , Y � E 3 + � φ 4 X , Y � E 4 • | φ | 2 = | φ 3 | 2 + | φ 4 | 2 = | σ | 2 − 2 | H | 2

  19. pmc surfaces in M 3 ( c ) × R • Let Σ 2 be a non-minimal pmc surface in M 3 ( c ) × R • Consider the orthonormal frame field { E 3 = H | H | , E 4 } in the normal bundle ⇒ E 4 = parallel • φ 3 = A 3 −| H | I and φ 4 = A 4 • φ ( X , Y ) = σ ( X , Y ) −� X , Y � H = � φ 3 X , Y � E 3 + � φ 4 X , Y � E 4 • | φ | 2 = | φ 3 | 2 + | φ 4 | 2 = | σ | 2 − 2 | H | 2 Proposition (F., Rosenberg - 2011) If Σ 2 is an immersed pmc surface in M n ( c ) × R , then 1 2 ∆ | T | 2 = | A N | 2 − 1 2 | T | 2 | φ | 2 − 2 � φ ( T , T ) , H � + c | T | 2 ( 1 −| T | 2 ) −| T | 2 | H | 2 .

  20. Theorem (F., Rosenberg - 2011) Let Σ 2 be an immersed pmc 2 -sphere in M n ( c ) × R , such that 1. | T | 2 = 0 or | T | 2 ≥ 2 3 and | σ | 2 ≤ c ( 2 − 3 | T | 2 ) , if c < 0 ; 2. | T | 2 ≤ 2 3 and | σ | 2 ≤ c ( 2 − 3 | T | 2 ) , if c > 0 . Then, Σ 2 is either a minimal surface in a totally umbilical hypersurface of M n ( c ) or a standard sphere in M 3 ( c ) .

  21. Theorem (F., Rosenberg - 2011) Let Σ 2 be an immersed pmc 2 -sphere in M n ( c ) × R , such that 1. | T | 2 = 0 or | T | 2 ≥ 2 3 and | σ | 2 ≤ c ( 2 − 3 | T | 2 ) , if c < 0 ; 2. | T | 2 ≤ 2 3 and | σ | 2 ≤ c ( 2 − 3 | T | 2 ) , if c > 0 . Then, Σ 2 is either a minimal surface in a totally umbilical hypersurface of M n ( c ) or a standard sphere in M 3 ( c ) . Proof. ◮ Q ( X , Y ) = 2 � σ ( X , Y ) , H �− c � X , ξ �� Y , ξ � ⇒ Q ( 2 , 0 ) = holomorphic

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend