use of artificial boundary conditions for schr odinger
play

Use of Artificial Boundary Conditions for Schr odinger equation by - PowerPoint PPT Presentation

Use of Artificial Boundary Conditions for Schr odinger equation by Christophe Besse Collaborators: X. Antoine, S. Descombes, P. Klein, J. Szeftel, F. Xing Institut de Math ematiques de Toulouse, Universit e Toulouse 3, CNRS Colloque


  1. Use of Artificial Boundary Conditions for Schr¨ odinger equation by Christophe Besse Collaborators: X. Antoine, S. Descombes, P. Klein, J. Szeftel, F. Xing Institut de Math´ ematiques de Toulouse, Universit´ e Toulouse 3, CNRS Colloque Couplages Num´ eriques INSTITUT de MATHEMATIQUES de TOULOUSE

  2. Outline of the talk 1 Introduction 2 Derivation of TBC for the linear Wave Eq. 3 Derivation of ABC for the 1D Schr¨ odinger Eq. 4 Numerical approximation of ABCs 5 Schwarz Waveform Relaxation method 2016/09 – Nice

  3. Introduction Typical equations odinger Eq. in R d The Schr¨  ( x, t ) ∈ R d × [0; T ] i∂ t ψ + ∆ ψ + V ( x, t, ψ ) ψ = 0 ,     ( S ) | x |→ + ∞ ψ ( x, t ) = 0 , lim t ∈ [0; T ]    x ∈ R d  ψ ( x, 0) = ψ 0 ( x ) , ψ ( x, t ) : wave function, complex V can be → real potential, V = V ( x, t ) ∈ C ∞ ( R d × R + , R ) Ex: V = q | ψ | 2 → nonlinear functional, V = f ( ψ ) → a combination: V = V ( x ) + f ( ψ ) ψ 0 compact support in Ω 2016/09 – Nice

  4. Introduction Typical equations The Wave Eq. in R  ∂ 2 t u − ∂ 2 x u = 0 , ( x, t ) ∈ R × [0; T ]     ( W ) | x |→ + ∞ u ( x, t ) = 0 , lim t ∈ [0; T ]     u ( x, 0) = u 0 ( x ) , ∂ t u ( x, 0) = u 1 ( x ) x ∈ R u ( x, t ) : real function, u 0 , u 1 compact support in Ω 2016/09 – Nice

  5. Domain trunction Problem : Mesh an unbounded domain (here in 1D) R d × [0; T ] 2016/09 – Nice

  6. Domain trunction Problem : Mesh an unbounded domain (here in 1D) R d × [0; T ] Truncation R × [0; T ] − → Ω T := ] x ℓ , x r [ × [0; T ] Introduction of a fictitious boundary Σ T := Σ × [0; T ] with Σ := ∂ Ω = { x l , x r } ⇒ BC on the boundary Σ T 2016/09 – Nice

  7. Domain trunction Problem : Mesh an unbounded domain (here in 1D) R d × [0; T ] Truncation R × [0; T ] − → Ω T := ] x ℓ , x r [ × [0; T ] Introduction of a fictitious boundary Σ T := Σ × [0; T ] with Σ := ∂ Ω = { x l , x r } ⇒ BC on the boundary Σ T Expression of the boundary condtion with the help of the Dirichlet-to-Neumann map: ∂ n ψ + i Λ + ψ = 0 , on Σ T . 2016/09 – Nice

  8. Domain trunction Problem : Mesh an unbounded domain (here in 1D) R d × [0; T ] Truncation R × [0; T ] − → Ω T := ] x ℓ , x r [ × [0; T ] Introduction of a fictitious boundary Σ T := Σ × [0; T ] with Σ := ∂ Ω = { x l , x r } ⇒ BC on the boundary Σ T Expression of the boundary condtion with the help of the Dirichlet-to-Neumann map: ∂ n ψ + i Λ + ψ = 0 , on Σ T . 2016/09 – Nice

  9. What happen if we do not take BC into account 1 Potential V ( x ) = x 0.9 0.8 Initial datum: 0.7 Evolution of | ψ | 0.6 gaussian function | u(x,t) | w.r.t time 0.5 ψ 0 ( x ) = e − x 2 +10 ix 0.4 ∆ t = 0 . 2 0.3 0.2 Domain: Ω = [ − 5; 15] 0.1 0 −5 0 5 10 15 x Exact Solution 2 0.9 1.8 0.8 1.6 0.7 1.4 0.6 1.2 0.5 t 1 t 0.4 0.8 0.3 0.6 0.2 0.4 0.1 0.2 0 −5 0 5 10 15 x x 2016/09 – Nice

  10. What happen if we do not take BC into account 1 Potential V ( x ) = x 0.9 0.8 Initial datum: 0.7 Evolution of | ψ | 0.6 gaussian function | u(x,t) | w.r.t time 0.5 ψ 0 ( x ) = e − x 2 +10 ix 0.4 ∆ t = 0 . 2 0.3 0.2 Domain: Ω = [ − 5; 15] 0.1 0 −5 0 5 10 15 x Approximated numerical solution 2 0.9 1.8 0.8 1.6 0.7 Homogeneous Dirichlet 1.4 Boundary Conditions: 0.6 1.2 0.5 ψ | Σ = 0 t 1 t 0.4 0.8 0.3 0.6 ⇒ Parasistic reflexion 0.2 0.4 0.1 0.2 0 −5 0 5 10 15 x x 2016/09 – Nice

  11. Domain decomposition 2016/09 – Nice

  12. Domain decomposition Global Domain Decomposition in (here 3) subdomains. Iterative procedure: Schwarz waveform relaxation method 2016/09 – Nice

  13. Domain decomposition B j = ∂ n j + S Informations exchanges from domain 2 → domain 1  L u k +1 = 0 , ( t, x ) ∈ (0 , T ) × ( a 1 , b 1 ) ,  1   u k +1 (0 , x ) = ψ 0 ( x ) , x ∈ ( a 1 , b 1 ) , 1 ∂ n 1 u k +1 = 0 , x = a 1 ,  1   B 1 u k +1 = B 1 u k 2 , x = b 1 . 1 2016/09 – Nice

  14. Domain decomposition B j = ∂ n j + S Informations exchanges from domain 1 → domain 2 and domain 3 → domain 2  L u k +1 = 0 , ( t, x ) ∈ (0 , T ) × ( a 2 , b 2 ) ,  2   u k +1 (0 , x ) = ψ 0 ( x ) , x ∈ ( a 2 , b 2 ) , 2 B 2 u k +1 = B 2 u k 1 , x = a 2 ,  2   B 2 u k +1 = B 2 u k 3 , x = b 2 . 2 2016/09 – Nice

  15. Domain decomposition B j = ∂ n j + S Informations exchanges from domain 2 → domain 3  L u k +1 = 0 , ( t, x ) ∈ (0 , T ) × ( a 3 , b 3 ) ,  3   u k +1 (0 , x ) = ψ 0 ( x ) , x ∈ ( a 3 , b 3 ) , 3 B 3 u k +1 = B 3 u k 2 , x = a 3 ,  3   ∂ n 3 u k +1 = 0 , x = a 3 . 3 2016/09 – Nice

  16. Domain decomposition Examples of operators S for Schr¨ odinger equation S = − ip , p real parameter (Halpern, Szeftel ’09-10) � S = − i∂ t − V ( a, b j ) , (Halpern, Szeftel ’09-10) S : Dirichlet-to-Neumann map i Λ + (X. Antoine, E. Lorin, A.D. Bandrauk & F. Xing, CB) 2016/09 – Nice

  17. Outline of the talk 1 Introduction 2 Derivation of TBC for the linear Wave Eq. 3 Derivation of ABC for the 1D Schr¨ odinger Eq. 4 Numerical approximation of ABCs 5 Schwarz Waveform Relaxation method 2016/09 – Nice

  18. TBC for Wave Eq. Homogeneous Wave Equation in 1D  ∂ 2 t ψ − ∂ 2 x ψ = 0 , ( x, t ) ∈ R x × [0; T ] ,  ( P ) ψ ( x, 0) = ψ 0 ( x ) , x ∈ R x ,  ∂ t ψ ( x, 0) = ψ 1 ( x ) , x ∈ R x . Hypothesis : supp ( ψ 0 , 1 ) ⊂ B (0 , R ) . Solution � x + t ψ ( x, t ) = 1 2( ψ 0 ( x + t ) + ψ 0 ( x − t )) + 1 ψ 1 ( y ) dy. 2 x − t Simply, ψ ( x, t ) = ϕ 1 ( x + t ) + ϕ 2 ( x − t ) , with � x 2 ϕ 1 ( x ) = ψ 0 ( x ) + ψ 1 ( y ) dy , � x −∞ 2 ϕ 2 ( x ) = ψ 0 ( x ) − ψ 1 ( y ) dy . −∞ 2016/09 – Nice

  19. TBC for Wave Eq. t x − L − R R L supp( ϕ ( x + t )) supp( ψ ( x − t )) ∀ t > 0 and ∀| x | > R , the supports are disjoint. x = − L x = L ψ ( x, t ) = ϕ 1 ( x + t ) ψ ( x, t ) = ϕ 2 ( x − t ) ∂ x ψ = ∂ t ψ ∂ x ψ = − ∂ t ψ Then, on x = ± L , the Neumann datum is expressed in function of the Dirichlet one ∂ n ψ + ∂ t ψ = 0 where n denotes the outwardly unit normal vector to Ω = ( − L, L ) . 2016/09 – Nice

  20. TBC for Wave Eq. The problem ( P ) is thus transformed in ( P app )  t ψ a − ∂ 2 x ψ a = 0 , ∂ 2 ( x, t ) ∈ Ω × [0; T ] ,    ψ a ( x, 0) = ψ 0 ( x ) , x ∈ Ω , ( P app ) ∂ t ψ a ( x, 0) = ψ 1 ( x ) , x ∈ Ω ,   ∂ n ψ a + ∂ t ψ a = 0 ,  ( x, t ) ∈ Γ × [0; T ] , where Γ = {− L, L } . ψ | Ω ( x, t ) = ψ a ( x, t ) , ( x, t ) ∈ Ω × [0; T ] . Ths BCs do not perturb the solution: we call them Transparent Boundary Conditions (TBC) Remark: ∂ 2 t − ∂ 2 x = ( ∂ t − ∂ x )( ∂ t + ∂ x ) . 2016/09 – Nice

  21. TBC for Wave Eq. Other way of derivation: Laplace transform � ∞ u ( x, t ) e − ωt dt L ( u )( x, ω ) = ˆ u ( x, ω ) = 0 with frequency ω = σ + iτ , σ > 0 L ( ∂ t u )( x, ω ) = ω ˆ u ( x, ω ) − u ( x, 0) , L ( ∂ 2 ω 2 ˆ t u )( x, ω ) = u ( x, ω ) − ωu ( x, 0) − ∂ t u ( x, 0) . 1 Transmission problem Interior Problem Exterior problem ( ∂ 2 t − ∂ 2  ( ∂ t − ∂ 2  x ) v = 0 , x ∈ Ω , t > 0 , x ) w = 0 , x ∈ Ω , t > 0 ,   ∂ x v = ∂ x w, x ∈ Γ , t > 0 ,   w ( x, t ) = v ( x, t ) , x = ± L, t > 0 ,  v ( x, 0) = ψ 0 ( x ) , x ∈ Ω , w ( x, 0) = 0 , x ∈ Ω ,    ∂ t v ( x, 0) = ψ 1 ( x ) , x ∈ Ω ,  ∂ t w ( x, 0) = 0 , x ∈ Ω .  2016/09 – Nice

  22. TBC for Wave Eq. 2 Laplace tranform w.r.t time for x > L : ω 2 ˆ w − ∂ 2 x ˆ w = 0 . w ( x, ω ) = A + ( ω ) e ω x + A − ( ω ) e − ω x Solution: ˆ → A + = 0 . 3 How to select the outgoing wave: solution of finite energy − w ( x, ω ) = e − ω ( x − L ) L ( w ( L, · ))( ω ) . ˆ Taking derivative ∂ x ˆ w ( x, ω ) | x = L = − ω ˆ w ( x, ω ) | x = L 4 Inverse Laplace tranform ∂ x w ( x, t ) | x = L = − ∂ t w ( x, t ) | x = L . 5 Thus, we obtain the TBC for v ∂ n v + ∂ t v = 0 2016/09 – Nice

  23. Outline of the talk 1 Introduction 2 Derivation of TBC for the linear Wave Eq. 3 Derivation of ABC for the 1D Schr¨ odinger Eq. 4 Numerical approximation of ABCs 5 Schwarz Waveform Relaxation method 2016/09 – Nice

  24. The 1D Eq. without potential 1 Splitting between interior and exterior problems Interior Problem Exterior problem ( i∂ t + ∂ 2 ( i∂ t + ∂ 2  x ) v = 0 , x ∈ Ω , t > 0 ,  x ) w = 0 , x ∈ Ω , t > 0 ,     ∂ x v = ∂ x w, x ∈ Σ , t > 0 ,  w ( x, t ) = v ( x, t ) , x = x l,r , t > 0 ,    v ( x, 0) = ψ 0 ( x ) , x ∈ Ω . | x |→ + ∞ w ( x, t ) = 0 , lim t > 0 ,       w ( x, 0) = 0 , x ∈ Ω . left exterior right exterior problem interior problem problem (x,t) v output: input: ��� ��� Neumann data Dirichlet data w x (x ,t) v (x ,t) L L ��� ��� x x R L 2 Laplace transform w.r.t time on Ω r i∂ t w + ∂ 2 w + ∂ 2 x w = 0 − → iω ˆ x ˆ w = 0 √− iω x + A − ( ω ) e − + √− iω x + w ( x, ω ) = A + ( ω ) e Solution: ˆ √· ) > 0 . with the determination of the square root s.t. Re ( + 2016/09 – Nice

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend