stability of some string beam systems
play

Stability of some string-beam systems Farhat Shel Facult e des - PowerPoint PPT Presentation

Introduction Feedback stabilization Thermoelastic case Stability of some string-beam systems Farhat Shel Facult e des Sciences de Monastir ContrOpt 2017 15-19 Mai 2017, Monastir, Tunisie Farhat Shel Stability of some string-beam systems


  1. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Energy space ℓ 1 ℓ 2 0 E. String E. Beam L 2 ( G ) = L 2 (0 , ℓ 1 ) × L 2 (0 , ℓ 2 ) . f = ( f 1 , f 2 ) ∈ H 1 (0 , ℓ 1 ) × H 2 (0 , ℓ 2 ) | f satisfies (1) � � V = ,  δ f 2 ( ℓ 2 ) = 0 , (1 − δ ) f 1 ( ℓ 1 ) = 0 ,  f 1 (0) = f 2 (0) , (1) ∂ x f 2 (0) = 0 .  Farhat Shel Stability of some string-beam systems

  2. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Energy space ℓ 1 ℓ 2 0 E. String E. Beam L 2 ( G ) = L 2 (0 , ℓ 1 ) × L 2 (0 , ℓ 2 ) . f = ( f 1 , f 2 ) ∈ H 1 (0 , ℓ 1 ) × H 2 (0 , ℓ 2 ) | f satisfies (1) � � V = ,  δ f 2 ( ℓ 2 ) = 0 , (1 − δ ) f 1 ( ℓ 1 ) = 0 , δ ∈ { 0 , 1 }  f 1 (0) = f 2 (0) , (1) ∂ x f 2 (0) = 0 .  Farhat Shel Stability of some string-beam systems

  3. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Energy space ℓ 1 ℓ 2 0 E. String E. Beam L 2 ( G ) = L 2 (0 , ℓ 1 ) × L 2 (0 , ℓ 2 ) . f = ( f 1 , f 2 ) ∈ H 1 (0 , ℓ 1 ) × H 2 (0 , ℓ 2 ) | f satisfies (1) � � V = ,  δ f 2 ( ℓ 2 ) = 0 , (1 − δ ) f 1 ( ℓ 1 ) = 0 , δ ∈ { 0 , 1 }  f 1 (0) = f 2 (0) , (1) ∂ x f 2 (0) = 0 .  Energy space: H = V × L 2 ( G ) , ∂ x f 1 1 , ∂ x f 2 ∂ 2 x f 1 2 , ∂ 2 x f 2 g 1 1 , g 2 g 1 2 , g 2 � � � � � � � � � y 1 , y 2 � H := + + + 1 2 1 2 Farhat Shel Stability of some string-beam systems

  4. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Energy space ℓ 1 ℓ 2 0 E. String E. Beam L 2 ( G ) = L 2 (0 , ℓ 1 ) × L 2 (0 , ℓ 2 ) . f = ( f 1 , f 2 ) ∈ H 1 (0 , ℓ 1 ) × H 2 (0 , ℓ 2 ) | f satisfies (1) � � V = ,  δ f 2 ( ℓ 2 ) = 0 , (1 − δ ) f 1 ( ℓ 1 ) = 0 , δ ∈ { 0 , 1 }  f 1 (0) = f 2 (0) , (1) ∂ x f 2 (0) = 0 .  Energy space: H = V × L 2 ( G ) , ∂ x f 1 1 , ∂ x f 2 ∂ 2 x f 1 2 , ∂ 2 x f 2 g 1 1 , g 2 g 1 2 , g 2 � � � � � � � � � y 1 , y 2 � H := + + + 1 2 1 2 Hilbert space. Farhat Shel Stability of some string-beam systems

  5. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Evolution equation Then the system ( S ) may be rewritten as the first order evolution equation on H , � y ′ ( t ) = A y ( t ) , t > 0 , (2) y (0) = y 0 where y = ( u , u t ) , y 0 = ( u 0 , u 1 ) . Farhat Shel Stability of some string-beam systems

  6. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Evolution equation Then the system ( S ) may be rewritten as the first order evolution equation on H , � y ′ ( t ) = A y ( t ) , t > 0 , (2) y (0) = y 0 where y = ( u , u t ) , y 0 = ( u 0 , u 1 ) .     u 1 v 1 u 2 v 2     A  =  .    ∂ 2  v 1 x u 1   − ∂ 4 v 2 x u 2 Farhat Shel Stability of some string-beam systems

  7. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Evolution equation y = ( u , v ) ∈ V 2 | u 1 ∈ H 2 (0 , ℓ 1 ), u 2 ∈ H 4 (0 , ℓ 2 ), y satisfies (3) � � D ( A ) =  (1 − δ ) ∂ x u 1 ( ℓ 1 ) = − (1 − δ ) v 1 ( ℓ 1 ) ,       (1 − δ ) ∂ 2 x u 2 ( ℓ 2 ) = 0,    (3) δ∂ 3 x u 2 ( ℓ 2 ) = δ v 2 ( ℓ 2 ) , δ∂ x u 2 ( ℓ 2 ) = 0 ,         ∂ x u 1 (0) − ∂ 3  x u 2 (0) = 0. Farhat Shel Stability of some string-beam systems

  8. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Theorem The operator A generates a C 0 -semigroup S ( t ) = e A t of contraction on H . Farhat Shel Stability of some string-beam systems

  9. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Theorem The operator A generates a C 0 -semigroup S ( t ) = e A t of contraction on H . For an initial datum y 0 ∈ H there exists a unique solution y ∈ C ([0 , + ∞ ) , H ) of the Cauchy problem (2). Farhat Shel Stability of some string-beam systems

  10. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Theorem The operator A generates a C 0 -semigroup S ( t ) = e A t of contraction on H . For an initial datum y 0 ∈ H there exists a unique solution y ∈ C ([0 , + ∞ ) , H ) of the Cauchy problem (2). Moreover if y 0 ∈ D ( A ) , then y ∈ C ([0 , + ∞ ) , D ( A )) ∩ C 1 ([0 , + ∞ ) , H ) . Farhat Shel Stability of some string-beam systems

  11. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Theorem The operator A generates a C 0 -semigroup S ( t ) = e A t of contraction on H . For an initial datum y 0 ∈ H there exists a unique solution y ∈ C ([0 , + ∞ ) , H ) of the Cauchy problem (2). Moreover if y 0 ∈ D ( A ) , then y ∈ C ([0 , + ∞ ) , D ( A )) ∩ C 1 ([0 , + ∞ ) , H ) . Proof (of the theorem). Farhat Shel Stability of some string-beam systems

  12. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Theorem The operator A generates a C 0 -semigroup S ( t ) = e A t of contraction on H . For an initial datum y 0 ∈ H there exists a unique solution y ∈ C ([0 , + ∞ ) , H ) of the Cauchy problem (2). Moreover if y 0 ∈ D ( A ) , then y ∈ C ([0 , + ∞ ) , D ( A )) ∩ C 1 ([0 , + ∞ ) , H ) . Proof (of the theorem). A is a dissipative operator on H . Farhat Shel Stability of some string-beam systems

  13. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Theorem The operator A generates a C 0 -semigroup S ( t ) = e A t of contraction on H . For an initial datum y 0 ∈ H there exists a unique solution y ∈ C ([0 , + ∞ ) , H ) of the Cauchy problem (2). Moreover if y 0 ∈ D ( A ) , then y ∈ C ([0 , + ∞ ) , D ( A )) ∩ C 1 ([0 , + ∞ ) , H ) . Proof (of the theorem). A is a dissipative operator on H . ]0 , + ∞ ) ⊂ ρ ( A ): the resolvent set of A . Farhat Shel Stability of some string-beam systems

  14. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Theorem The operator A generates a C 0 -semigroup S ( t ) = e A t of contraction on H . For an initial datum y 0 ∈ H there exists a unique solution y ∈ C ([0 , + ∞ ) , H ) of the Cauchy problem (2). Moreover if y 0 ∈ D ( A ) , then y ∈ C ([0 , + ∞ ) , D ( A )) ∩ C 1 ([0 , + ∞ ) , H ) . Proof (of the theorem). A is a dissipative operator on H . ]0 , + ∞ ) ⊂ ρ ( A ): the resolvent set of A . Conclusion: by Lumer phillips theorem. Farhat Shel Stability of some string-beam systems

  15. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case ⇒ S ( t ) = e A t is exponentially stable: exponential stability ⇐ � S ( t ) y 0 � ≤ Ce − wt � y 0 � ∀ t > 0 . Farhat Shel Stability of some string-beam systems

  16. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case ⇒ S ( t ) = e A t is exponentially stable: exponential stability ⇐ � S ( t ) y 0 � ≤ Ce − wt � y 0 � ∀ t > 0 . Lemma [Gearhard-Pr¨ uss-Huang] A C 0 -semigroup of contraction e t B is exponentially stable if, and only if, i R = { i β | β ∈ R } ⊆ ρ ( B ) (4) and � ( i β − B ) − 1 � � < ∞ . � lim sup (5) | β |→∞ Farhat Shel Stability of some string-beam systems

  17. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case ⇒ S ( t ) = e A t is polynomially stable: polynomial stability ⇐ � S ( t ) y 0 � ≤ C t α � y 0 � D ( A ) ∀ t > 0 . Farhat Shel Stability of some string-beam systems

  18. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case ⇒ S ( t ) = e A t is polynomially stable: polynomial stability ⇐ � S ( t ) y 0 � ≤ C t α � y 0 � D ( A ) ∀ t > 0 . Lemma [Borichev-Tomilov] A C 0 -semigroup of contraction e t B on a Hilbert space H satisfies � ≤ C � � e t B y 0 � � y 0 � D ( B ) 1 t α for some constant C > 0 and for α > 0 if, and only if, (4) holds and | β |→∞ sup 1 � ( i β − B ) − 1 � � < ∞ � lim (6) β α Farhat Shel Stability of some string-beam systems

  19. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Exponential stability Theorem If the feedback is applied at the exterior end of the string then, the system ( S ) is exponentially stable. Farhat Shel Stability of some string-beam systems

  20. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Proof The operator A satisfies condition (4). It suffices to prove that (5) holds. Suppose the conclusion is false. Then there exists a sequense ( β n ) of real numbers, without loss of generality, with β n − → + ∞ , and a sequence of vectors ( y n ) = ( u n , v n ) in D ( A ) with � y n � H = 1, such that � ( i β n I − A ) y n � H − → 0 . Farhat Shel Stability of some string-beam systems

  21. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Proof The operator A satisfies condition (4). It suffices to prove that (5) holds. Suppose the conclusion is false. Then there exists a sequense ( β n ) of real numbers, without loss of generality, with β n − → + ∞ , and a sequence of vectors ( y n ) = ( u n , v n ) in D ( A ) with � y n � H = 1, such that � ( i β n I − A ) y n � H − → 0 . We prove that this condition yields the contradiction � y n � H − → 0 as n − → 0 . Farhat Shel Stability of some string-beam systems

  22. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Exponential stability in H 1 (0 , ℓ 1 ) , i β n u 1 , n − v 1 , n = f 1 , n − → 0 , in H 2 (0 , ℓ 2 ) , i β n u 2 , n − v 2 , n = f 2 , n − → 0 , i β n v 2 , n − ∂ 2 in L 2 (0 , ℓ 1 ) , x u 2 , n = g 2 , n − → 0 , i β n v 2 , n + ∂ 4 in L 2 (0 , ℓ 2 ) . x u 2 , n = g 2 , n − → 0 , Farhat Shel Stability of some string-beam systems

  23. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Exponential stability in H 1 (0 , ℓ 1 ) , i β n u 1 , n − v 1 , n = f 1 , n − → 0 , in H 2 (0 , ℓ 2 ) , i β n u 2 , n − v 2 , n = f 2 , n − → 0 , i β n v 2 , n − ∂ 2 in L 2 (0 , ℓ 1 ) , x u 2 , n = g 2 , n − → 0 , i β n v 2 , n + ∂ 4 in L 2 (0 , ℓ 2 ) . x u 2 , n = g 2 , n − → 0 , Then − β 2 n u 1 , n − ∂ 2 x u 1 , n = g 1 , n + i β n f 1 , n , (7) − β 2 n u 2 , n + ∂ 4 x u 2 , n = g 2 , n + i β n f 2 , n (8) and � v j , n � 2 − β 2 n � u j , n � 2 − → 0 , j = 1 , 2 . Farhat Shel Stability of some string-beam systems

  24. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Exponential stability ◮ β n u 1 , n ( ℓ 1 ) − → 0 , ∂ x u 1 , n ( ℓ 1 ) − → 0 . Farhat Shel Stability of some string-beam systems

  25. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Exponential stability ◮ β n u 1 , n ( ℓ 1 ) − → 0 , ∂ x u 1 , n ( ℓ 1 ) − → 0 . � ∂ x u 1 , n � 2 + β 2 n � u 1 , n � 2 − ◮ (7) ∗ q ∂ x u 1 , n : → 0 , ◮ β n u 1 , n (0) , ∂ x u 1 , n (0) , Re ( i β n f 1 , n (0) u 1 , n (0)) − → 0 , Farhat Shel Stability of some string-beam systems

  26. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Exponential stability ◮ β n u 1 , n ( ℓ 1 ) − → 0 , ∂ x u 1 , n ( ℓ 1 ) − → 0 . � ∂ x u 1 , n � 2 + β 2 n � u 1 , n � 2 − ◮ (7) ∗ q ∂ x u 1 , n : → 0 , ◮ β n u 1 , n (0) , ∂ x u 1 , n (0) , Re ( i β n f 1 , n (0) u 1 , n (0)) − → 0 , ◮ (8) ∗ q ∂ x u 2 , n : � 2 + 1 � 2 → 0 , n � u 2 , n � 2 + 3 − 1 � ∂ 2 � � 2 β 2 � � ∂ 2 � x u 2 , n ( ℓ 2 ) x u 2 , n 2 2 Farhat Shel Stability of some string-beam systems

  27. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Exponential stability ◮ β n u 1 , n ( ℓ 1 ) − → 0 , ∂ x u 1 , n ( ℓ 1 ) − → 0 . � ∂ x u 1 , n � 2 + β 2 n � u 1 , n � 2 − ◮ (7) ∗ q ∂ x u 1 , n : → 0 , ◮ β n u 1 , n (0) , ∂ x u 1 , n (0) , Re ( i β n f 1 , n (0) u 1 , n (0)) − → 0 , ◮ (8) ∗ q ∂ x u 2 , n : � 2 + 1 � 2 → 0 , n � u 2 , n � 2 + 3 − 1 � � ∂ 2 � 2 β 2 � ∂ 2 � � x u 2 , n ( ℓ 2 ) x u 2 , n 2 2 e − β 1 / 2 x : 1 ∂ 2 ◮ (8) ∗ x u 2 , n ( ℓ 2 ) → 0 , n β 1 / 2 n Farhat Shel Stability of some string-beam systems

  28. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Exponential stability ◮ β n u 1 , n ( ℓ 1 ) − → 0 , ∂ x u 1 , n ( ℓ 1 ) − → 0 . � ∂ x u 1 , n � 2 + β 2 n � u 1 , n � 2 − ◮ (7) ∗ q ∂ x u 1 , n : → 0 , ◮ β n u 1 , n (0) , ∂ x u 1 , n (0) , Re ( i β n f 1 , n (0) u 1 , n (0)) − → 0 , ◮ (8) ∗ q ∂ x u 2 , n : � 2 + 1 � 2 → 0 , n � u 2 , n � 2 + 3 − 1 � � ∂ 2 � 2 β 2 � � ∂ 2 � x u 2 , n ( ℓ 2 ) x u 2 , n 2 2 e − β 1 / 2 x : 1 ∂ 2 ◮ (8) ∗ x u 2 , n ( ℓ 2 ) → 0 , n β 1 / 2 n ◮ 1 n � u 2 , n � 2 + 3 � 2 → 0 . 2 β 2 � ∂ 2 � � x u 2 , n 2 Farhat Shel Stability of some string-beam systems

  29. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Exponential stability ◮ β n u 1 , n ( ℓ 1 ) − → 0 , ∂ x u 1 , n ( ℓ 1 ) − → 0 . � ∂ x u 1 , n � 2 + β 2 n � u 1 , n � 2 − ◮ (7) ∗ q ∂ x u 1 , n : → 0 , ◮ β n u 1 , n (0) , ∂ x u 1 , n (0) , Re ( i β n f 1 , n (0) u 1 , n (0)) − → 0 , ◮ (8) ∗ q ∂ x u 2 , n : � 2 + 1 � 2 → 0 , n � u 2 , n � 2 + 3 − 1 � � ∂ 2 � 2 β 2 � ∂ 2 � � x u 2 , n ( ℓ 2 ) x u 2 , n 2 2 e − β 1 / 2 x : 1 ∂ 2 ◮ (8) ∗ x u 2 , n ( ℓ 2 ) → 0 , n β 1 / 2 n ◮ 1 n � u 2 , n � 2 + 3 � 2 → 0 . 2 β 2 � ∂ 2 � � x u 2 , n 2 In conclusion � y n � converge to 0 , which contradict the hypothesis that � y n � = 1 . Farhat Shel Stability of some string-beam systems

  30. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Polynomial stability Theorem If no control is applied on the string then, the C 0 -semigroup is polynomially stable. More precisely, there is C > 0 such that � ≤ C � � e t A y 0 � t � y 0 � D ( A ) for every y 0 ∈ D ( A ) . Proof It suffices to prove that (6) holds for α = 1. Suppose the conclusion is false. There exists a sequence ( β n ) of real numbers, without loss of generality, with β n − → + ∞ , and a sequence of vectors ( y n ) = ( u n , v n ) in D ( A ) with � y n � H = 1, such that � β α n ( i β n I − A ) y n � H − → 0 Farhat Shel Stability of some string-beam systems

  31. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Polynomial stability Lemma [Gagliardo-Nirenberg] (1) There are two positive constants C 1 and C 2 such that for any w in H 1 (0 , ℓ j ) , � w � ∞ ≤ C 1 � ∂ x w � 1 / 2 � w � 1 / 2 + C 2 � w � . (9) (2) There are two positive constants C 3 and C 4 such that for any w in H 2 (0 , ℓ j ) , � 1 / 2 � w � 1 / 2 + C 4 � w � . � � ∂ 2 � � ∂ x w � ≤ C 3 x w (10) Farhat Shel Stability of some string-beam systems

  32. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Non exponential stability  u 1 , tt − u 1 , xx = 0 in (0 , π ) × (0 , ∞ ) ,   u 2 , tt + u 2 , xxxx = 0 in (0 , π ) × (0 , ∞ ),        u 1 (0 , t ) = u 2 (0 , t ) , u 2 , x (0 , t ) = 0 , u 2 , xxx (0 , t ) = u 1 , x (0 , t ) , u 1 ( π, t ) = 0 , u 2 , xxx ( π, t ) = u 2 , t ( π, t ) , u 2 , x ( π, t ) = 0 ,         u j ( x , 0) = u 0 j ( x ) , u j , t ( x , 0) = u 1 j ( x ) , j = 1 , 2 .  Farhat Shel Stability of some string-beam systems

  33. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Non exponential stability  u 1 , tt − u 1 , xx = 0 in (0 , π ) × (0 , ∞ ) ,   u 2 , tt + u 2 , xxxx = 0 in (0 , π ) × (0 , ∞ ),        u 1 (0 , t ) = u 2 (0 , t ) , u 2 , x (0 , t ) = 0 , u 2 , xxx (0 , t ) = u 1 , x (0 , t ) , u 1 ( π, t ) = 0 , u 2 , xxx ( π, t ) = u 2 , t ( π, t ) , u 2 , x ( π, t ) = 0 ,         u j ( x , 0) = u 0 j ( x ) , u j , t ( x , 0) = u 1 j ( x ) , j = 1 , 2 .  The system is not exponentially stable. Farhat Shel Stability of some string-beam systems

  34. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Proof We prove that the corresponding semigroup e t A is not exponentially stable. Let Farhat Shel Stability of some string-beam systems

  35. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Proof We prove that the corresponding semigroup e t A is not exponentially stable. Let ◮ β n = n 2 + 2 √ n + 1 n , β n → + ∞ ◮ f n = (0 , 0 , − sin β n x , 0) , f n is in H and is bounded. ◮ y n = ( u 1 , n , u 2 , n , v 1 , n , v 2 , n ) ∈ D ( A ) such that ( A − i β n ) y n = f n . We will prove that y n → + ∞ . Farhat Shel Stability of some string-beam systems

  36. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Proof We prove that the corresponding semigroup e t A is not exponentially stable. Let ◮ β n = n 2 + 2 √ n + 1 n , β n → + ∞ ◮ f n = (0 , 0 , − sin β n x , 0) , f n is in H and is bounded. ◮ y n = ( u 1 , n , u 2 , n , v 1 , n , v 2 , n ) ∈ D ( A ) such that ( A − i β n ) y n = f n . We will prove that y n → + ∞ . ◮ u 1 , n = c 1 sin( β n x ) + ( − x + c 2 ) cos( β n x ) , 2 β n � � u 2 , n = d 1 sin( β n x ) + d 2 cos( β n x ) � � + d 3 sinh( β n x ) + d 4 cosh( β n x ) . Farhat Shel Stability of some string-beam systems

  37. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Proof ◮ π 2 √ n . 2 β 3 / 2 d 1 ∼ + ∞ n 2 Farhat Shel Stability of some string-beam systems

  38. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Proof ◮ π 2 √ n . 2 β 3 / 2 d 1 ∼ + ∞ n 2 ◮ 2 � � − 1 � − π − π 2 | β n c 2 | 2 � � + β n c 1 � � 2 2 β n � � π = − 1 � 2 + � 2 ) + Re ( 2( β 2 � u 1 � ∂ x u 1 � � � � sin( β n x )( π − x ) ∂ x u 1 n dx ) . n n n 0 Farhat Shel Stability of some string-beam systems

  39. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Proof ◮ π 2 √ n . 2 β 3 / 2 d 1 ∼ + ∞ n 2 ◮ 2 � − 1 � � − π − π 2 | β n c 2 | 2 � � + β n c 1 � � 2 2 β n � � π = − 1 � 2 + � 2 ) + Re ( 2( β 2 � u 1 � ∂ x u 1 � � � � sin( β n x )( π − x ) ∂ x u 1 n dx ) . n n n 0 � 2 + � 2 must be not bounded. In conclusion y n is β 2 � � u 1 � � � ∂ x u 1 � n n n not bounded. Farhat Shel Stability of some string-beam systems

  40. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Remarks Let ε > 0 . By taking β n = n 2 + 2 n 1 − α + 1 n 2 α with 0 < α < ε and such that n 1 − α is integer and even and y n is such that 1 2 − ε f n = ( β ( A − i β n )) y n , then we can prove that y n is not n bounded and then the polynomial stability of ( S ) can’t be butter than 1 t 2 . Farhat Shel Stability of some string-beam systems

  41. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Remarks Let ε > 0 . By taking β n = n 2 + 2 n 1 − α + 1 n 2 α with 0 < α < ε and such that n 1 − α is integer and even and y n is such that 1 2 − ε f n = ( β ( A − i β n )) y n , then we can prove that y n is not n bounded and then the polynomial stability of ( S ) can’t be butter than 1 t 2 . If we replace the boundary conditions by the followings 0 , (1 − δ ) u 1 δ u 1 ( ℓ 1 , t ) = xx ( ℓ 1 , t ) = 0 , (1 − δ ) u 1 , x ( ℓ 1 , t ) = − (1 − δ ) u 1 , t ( ℓ 1 , t ) , δ u 2 , xx ( ℓ 2 , t ) = − δ u 2 , tx ( ℓ 2 , t ) , u 2 ( ℓ 2 , t ) = 0 . Farhat Shel Stability of some string-beam systems

  42. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Remarks Let ε > 0 . By taking β n = n 2 + 2 n 1 − α + 1 n 2 α with 0 < α < ε and such that n 1 − α is integer and even and y n is such that 1 2 − ε f n = ( β ( A − i β n )) y n , then we can prove that y n is not n bounded and then the polynomial stability of ( S ) can’t be butter than 1 t 2 . If we replace the boundary conditions by the followings 0 , (1 − δ ) u 1 δ u 1 ( ℓ 1 , t ) = xx ( ℓ 1 , t ) = 0 , (1 − δ ) u 1 , x ( ℓ 1 , t ) = − (1 − δ ) u 1 , t ( ℓ 1 , t ) , δ u 2 , xx ( ℓ 2 , t ) = − δ u 2 , tx ( ℓ 2 , t ) , u 2 ( ℓ 2 , t ) = 0 . then we obtain the same results. Farhat Shel Stability of some string-beam systems

  43. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case System ℓ 1 ℓ 2 0 E. String E. Beam u 1 , tt − α 1 u 1 , xx = 0 , u 2 , tt + α 2 u 2 , xxxx = 0 Transmission conditions u 1 (0 , t ) = u 2 (0 , t ) , u 2 , x (0 , t ) = 0 , α 2 u 2 , xxx (0 , t ) = α 1 u 1 , x (0 , t ) , . Boundary conditions u 1 ( ℓ 1 , t ) = 0 , u 2 ( ℓ 2 , t ) = 0 , u 2 , xx ( ℓ 2 , t ) = 0 . Farhat Shel Stability of some string-beam systems

  44. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case System ℓ 1 ℓ 2 0 TE. String TE. Beam u 1 , tt − α 1 u 1 , xx = 0 , u 2 , tt + α 2 u 2 , xxxx = 0 Transmission conditions u 1 (0 , t ) = u 2 (0 , t ) , u 2 , x (0 , t ) = 0 , α 2 u 2 , xxx (0 , t ) = α 1 u 1 , x (0 , t ) , . Boundary conditions u 1 ( ℓ 1 , t ) = 0 , u 2 ( ℓ 2 , t ) = 0 , u 2 , xx ( ℓ 2 , t ) = 0 . Farhat Shel Stability of some string-beam systems

  45. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case System ℓ 1 ℓ 2 0 TE. String TE. Beam u 1 , tt − α 1 u 1 , xx + β 1 θ 1 , x = 0 , u 2 , tt + α 2 u 2 , xxxx + β 2 θ 2 , x = 0 θ 1 , t + β 1 u 1 , tx − κ 1 θ 1 , xx = 0 θ 2 , t + β 2 u 2 , txx − κ 2 θ 2 , xx = 0 Transmission conditions u 1 (0 , t ) = u 2 (0 , t ) , u 2 , x (0 , t ) = 0 , α 2 u 2 , xxx (0 , t ) = α 1 u 1 , x (0 , t ) , . Boundary conditions u 1 ( ℓ 1 , t ) = 0 , u 2 ( ℓ 2 , t ) = 0 , u 2 , xx ( ℓ 2 , t ) = 0 . Farhat Shel Stability of some string-beam systems

  46. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case System ℓ 1 ℓ 2 0 TE. String TE. Beam u 1 , tt − α 1 u 1 , xx + β 1 θ 1 , x = 0 , u 2 , tt + α 2 u 2 , xxxx + β 2 θ 2 , x = 0 θ 1 , t + β 1 u 1 , tx − κ 1 θ 1 , xx = 0 θ 2 , t + β 2 u 2 , txx − κ 2 θ 2 , xx = 0 Transmission conditions u 1 (0 , t ) = u 2 (0 , t ) , u 2 , x (0 , t ) = 0 , θ 1 (0 , t ) = θ 2 (0 , t ) , α 2 u 2 , xxx (0 , t ) − β 2 θ 2 , x (0 , t ) = α 1 u 1 , x (0 , t ) − β 1 θ 1 (0 , t ) , κ 1 θ 1 , x (0 , t ) + κ 2 θ 2 , x (0 , t ) = 0 . Boundary conditions u 1 ( ℓ 1 , t ) = 0 , θ ( ℓ 1 , t ) = 0 , θ ( ℓ 2 , t ) = 0 , u 2 ( ℓ 2 , t ) = 0 , u 2 , xx ( ℓ 2 , t ) = 0 . Farhat Shel Stability of some string-beam systems

  47. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case System ℓ 1 ℓ 2 0 TE. String TE. Beam u 1 , tt − α 1 u 1 , xx + β 1 θ 1 , x = 0 , u 2 , tt + α 2 u 2 , xxxx + β 2 θ 2 , x = 0 θ 1 , t + β 1 u 1 , tx − κ 1 θ 1 , xx = 0 θ 2 , t + β 2 u 2 , txx − κ 2 θ 2 , xx = 0 Transmission conditions u 1 (0 , t ) = u 2 (0 , t ) , u 2 , x (0 , t ) = 0 , θ 1 (0 , t ) = θ 2 (0 , t ) , α 2 u 2 , xxx (0 , t ) − β 2 θ 2 , x (0 , t ) = α 1 u 1 , x (0 , t ) − β 1 θ 1 (0 , t ) , κ 1 κ 2 ( κ 1 θ 1 , x (0 , t ) + κ 2 θ 2 , x (0 , t )) = 0 . Boundary conditions u 1 ( ℓ 1 , t ) = 0 , θ ( ℓ 1 , t ) = 0 , θ ( ℓ 2 , t ) = 0 , u 2 ( ℓ 2 , t ) = 0 , u 2 , xx ( ℓ 2 , t ) = 0 . Farhat Shel Stability of some string-beam systems

  48. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case System For a solution ( u , v , θ ) of ( S ) the energy is defined as � ℓ 1 E ( t ) = 1 � | u 1 , t | 2 + α 1 | u 1 , x | 2 + | θ 1 | 2 � dx 2 0 � ℓ 2 +1 � | u 2 , t | 2 + α 2 | u 2 , xx | 2 + | θ 2 | 2 � dx . 2 0 Differentiate formally the energy function with respect to time t , we get d dt E ( t ) = − κ 1 � ∂ x θ 1 � 2 − κ 2 � ∂ x θ 2 � 2 and the system is dissipative. Farhat Shel Stability of some string-beam systems

  49. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Let us consider f = ( f 1 , f 2 ) ∈ H 1 (0 , ℓ 1 ) × H 2 (0 , ℓ 2 ) | f satisfies (11) � � V = where f 1 ( ℓ 1 ) = 0 , f 2 ( ℓ 2 ) = 0 , f 1 (0) = f 2 (0) and ∂ x f 2 (0) = 0 . (11) Define the Hilbert space H L 2 (0 , ℓ 1 ) × L 2 (0 , ℓ 2 ) � � H = V × × W with W = L 2 (0 , ℓ 1 ) × L 2 (0 , ℓ 2 ) if e 1 and e 2 are thermoelastic, W = L 2 (0 , ℓ 1 ) × { 0 } if only e 1 is thermoelastic and W = { 0 } × L 2 (0 , ℓ 2 ) if only e 1 is purely elastic, and norm given by 2 � 2 + � z � H := α 1 � ∂ x f 1 � 2 + α 2 � g j � 2 + � h j � 2 � � � ∂ 2 � � � x f 2 j =1 where z = ( f = ( f 1 , f 2 ) , g = ( g 1 , g 2 ) , h = ( h 1 , h 2 )) . Farhat Shel Stability of some string-beam systems

  50. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case � y = ( u , v , θ ) ∈ V ∩ ( H 2 (0 , ℓ 1 ) × H 4 (0 , ℓ 2 )) × V × W 2 | � D ( A ) = and y satisfies (12) with W 2 = H 2 (0 , ℓ 1 ) × H 2 (0 , ℓ 2 ) if e 1 and e 2 are T.... and where ∂ 2  x u 2 ( ℓ 2 ) = 0 , θ 1 ( ℓ 1 ) = θ 2 ( ℓ 2 ) = 0 ,   θ 1 (0) = θ 2 (0) ,  (12) α 2 ∂ 3 x u 2 (0) − β 2 ∂ x θ 2 (0) = α 1 ∂ x u 1 (0) − β 1 θ 1 (0) ,   κ 1 κ 2 ( κ 1 ∂ x θ 1 (0) + κ 2 ∂ x θ 2 (0)) = 0 .  Farhat Shel Stability of some string-beam systems

  51. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case � y = ( u , v , θ ) ∈ V ∩ ( H 2 (0 , ℓ 1 ) × H 4 (0 , ℓ 2 )) × V × W 2 | � D ( A ) = and y satisfies (12) with W 2 = H 2 (0 , ℓ 1 ) × H 2 (0 , ℓ 2 ) if e 1 and e 2 are T.... and where ∂ 2  x u 2 ( ℓ 2 ) = 0 , θ 1 ( ℓ 1 ) = θ 2 ( ℓ 2 ) = 0 ,   θ 1 (0) = θ 2 (0) ,  (12) α 2 ∂ 3 x u 2 (0) − β 2 ∂ x θ 2 (0) = α 1 ∂ x u 1 (0) − β 1 θ 1 (0) ,   κ 1 κ 2 ( κ 1 ∂ x θ 1 (0) + κ 2 ∂ x θ 2 (0)) = 0 .  with β j = 0 and κ j = 0 if e j is purely elastic, Farhat Shel Stability of some string-beam systems

  52. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case � y = ( u , v , θ ) ∈ V ∩ ( H 2 (0 , ℓ 1 ) × H 4 (0 , ℓ 2 )) × V × W 2 | � D ( A ) = and y satisfies (12) with W 2 = H 2 (0 , ℓ 1 ) × H 2 (0 , ℓ 2 ) if e 1 and e 2 are T.... and where ∂ 2  x u 2 ( ℓ 2 ) = 0 , θ 1 ( ℓ 1 ) = θ 2 ( ℓ 2 ) = 0 ,   θ 1 (0) = θ 2 (0) ,  (12) α 2 ∂ 3 x u 2 (0) − β 2 ∂ x θ 2 (0) = α 1 ∂ x u 1 (0) − β 1 θ 1 (0) ,   κ 1 κ 2 ( κ 1 ∂ x θ 1 (0) + κ 2 ∂ x θ 2 (0)) = 0 .  with β j = 0 and κ j = 0 if e j is purely elastic, and  u 1   v 1  u 2 v 2     α 1 ∂ 2     v 1 x u 1 − β 1 ∂ x θ 1     A = .    − α 2 ∂ 4 x u 2 + β 2 ∂ 2  v 2 x θ 2        − β 1 ∂ x v 1 + κ 1 ∂ 2  θ 1 x θ 1     − β 2 ∂ xx v 2 + κ 2 ∂ 2 θ 2 x θ 2 Farhat Shel Stability of some string-beam systems

  53. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Then, putting y = ( u , u t , θ ) , we write the system ( S ) in the three cases, into the following first order evolution equation d � dt y = A y (13) y (0) = y 0 on the energy space H , where y 0 = ( u 0 , v 0 , θ 0 ) . We have the following result, Lemma The operator A is the infinitesimal generator of a C 0 -semigroup of contraction S ( t ) . Farhat Shel Stability of some string-beam systems

  54. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Exponential stability Lemma The semigroup S ( t ) , generated by the operator A is asymptotically stable. Theorem If the string is thermoelastic, then the system ( S ) is exponentially stable. Farhat Shel Stability of some string-beam systems

  55. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Proof It suffices to prove that (5) holds. Suppose the conclusion is false. Then there exists a sequence ( w n ) of real numbers, with w n − → + ∞ and a sequence of vectors ( y n ) = ( u n , v n , θ n ) in D ( A ) with � y n � H = 1, such that � ( i w n I − A ) y n � H F − → 0 which is equivalent to in H 1 (0 , ℓ 1 ) , i w n u 1 , n − v 1 , n = f 1 , n − → 0 , i w n v 1 , n − α 1 ∂ 2 in L 2 (0 , ℓ 1 ) , x u 1 , n + β 1 ∂ x θ 1 , n = g 1 , n − → 0 , i w n θ 1 , n + β 1 ∂ x v 1 , n − κ 1 ∂ 2 in L 2 (0 , ℓ 1 ) , x θ 1 , n = h 1 , n − → 0 , and in H 2 (0 , ℓ 2 ) , i w 2 , n u 2 , n − v 2 , n = f 2 , n − → 0 , i w n v 2 , n + α 2 ∂ 4 in L 2 (0 , ℓ 2 ) , x u 2 , n = g 2 , n − → 0 , Farhat Shel Stability of some string-beam systems

  56. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case We get w 2 n u 1 , n + α 1 ∂ 2 x u 1 , n − β 1 ∂ x θ 1 , n = − g 1 , n − i w n f 1 , n , (14) − w 2 n u 2 , n + α 2 ∂ 4 x u 2 , n = g 2 , n + i w n f 2 , n , (15) and � v j , n � 2 − w 2 n � u j , n � 2 − → 0 , j = 1 , 2 . First, since Re ( � ( i w n − A ) y n , y n � H ) = − κ 1 � ∂ x θ 1 � 2 we obtain that ∂ x θ 1 , n converges to 0 in L 2 (0 , ℓ 2 ). As in [ ? ] one can get � w n u 1 , n � , � ∂ x u 1 , n � , � θ 1 , n � − → 0 . Moreover w n u 1 , n (0) , ∂ x u 1 , n (0) , θ 1 , n (0) − → 0 . (16) Farhat Shel Stability of some string-beam systems

  57. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Proof Taking the inner product of (15) with p = ( ℓ 2 − x ) ∂ x u 2 , n ( x ) , � ℓ 2 � ℓ 2 − 1 � 2 ℓ 2 +1 n | u 2 , n | 2 dx +3 � 2 dx → 0 � ∂ 2 � � w 2 � � ∂ 2 � 2 α 2 x u 2 , n (0) 2 α 2 x u 2 , n 2 0 0 e − aw 1 / 2 1 x Now the inner product of the first member of (15) by n w 1 / 2 n 1 gives, with a = , α 1 / 4 2 α 2 ∂ 3 x u 2 , n (0) + α 2 a ∂ 2 x u 2 , n (0) = o (1) w 1 / 2 n then ∂ 2 x u 2 , n (0) = o (1) Return back to(4), � ℓ 2 � ℓ 2 � 2 dx , converge to zero n | u 2 , n | 2 dx , w 2 � ∂ 2 � � x u 2 , n 0 0 Farhat Shel Stability of some string-beam systems

  58. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Lack of exponential stability In this part the string is purely elastic . Farhat Shel Stability of some string-beam systems

  59. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Lack of exponential stability In this part the string is purely elastic . We take ℓ 1 = ℓ 2 = π , κ 2 << α 2 . Farhat Shel Stability of some string-beam systems

  60. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Lack of exponential stability In this part the string is purely elastic . We take ℓ 1 = ℓ 2 = π , κ 2 << α 2 . Theorem If the string is purely elastic then the system ( S ) is not exponential stable in the energy space H . Farhat Shel Stability of some string-beam systems

  61. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Proof We prove that the corresponding semigroup ( S ( t )) t ≥ 0 is not exponentially stable. For n ∈ N , let f n = (0 , 0 , − α 1 sin β n x , 0 , 0) , with β n → + ∞ and f n is in H and is bounded. Let y n = ( u 1 , n , u 2 , n , v 1 , n , v 2 , n , θ 2 , n ) ∈ D ( A ) such that ( A − id n ) y n = f n . We will prove that y n → + ∞ . We have w 2 n u 1 , n + α 1 ∂ 2 x u 1 , n = α 1 sin β n x with w n = √ α 1 β n , and in H 2 (0 , π ) , (17) i w 2 , n u 2 , n − v 2 , n = 0 , − w 2 n u 2 , n + α 2 ∂ 4 x u 2 , n − β 2 ∂ 2 in L 2 (0 , π ) , = 0 , (18) x θ 2 , n i w n θ 2 , n + i w n β 2 ∂ 2 x u 2 , n − κ 2 ∂ 2 in L 2 (0 , π ) . x θ 2 , n = 0 , (19) Notations: α 2 = α , β 2 = β , κ 2 = κ . Farhat Shel Stability of some string-beam systems

  62. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Proof The function u 1 , n is of the form u 1 , n = c 1 sin( w n x ) + ( − x + c 2 ) cos( w n x ) , 2 w n Farhat Shel Stability of some string-beam systems

  63. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Proof The function u 1 , n is of the form u 1 , n = c 1 sin( w n x ) + ( − x + c 2 ) cos( w n x ) , 2 w n Using (18) and (19) we obtain that ακ∂ 6 x u 2 , n − i w n ( α + β 2 ) ∂ 4 x u 2 , n − κ w 2 n ∂ 2 x u 2 , n + i w 3 n u 2 , n = 0 , (20) By taking A = 3 ακ 2 + ( α + β 2 ) 2 , B = 9 ακ 2 ( α + β 2 ) + 2( α + β 2 ) 3 − 27 α 2 κ 2 , � √ � √ � 1 / 3 � 1 / 3 B 2 + 4 A 3 + B B 2 + 4 A 3 − B 1 1 a 1 = , b 1 = 2 1 / 3 2 1 / 3 and r = α + β 2 , the squares of the solutions of (20) are Farhat Shel Stability of some string-beam systems

  64. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Proof � √ �� w n 3 � r + 1 x 1 = 2 ( a 1 − a 2 ) + i 2 ( a 1 − a 2 ) 3 ακ √ � �� w n 3 � r + 1 x 2 = − 2 a 1 + i 2 a 1 + a 2 , 3 ακ � √ �� � w n 3 r − a 1 − 1 x 3 = 2 a 2 + i 2 a 2 3 ακ Farhat Shel Stability of some string-beam systems

  65. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Proof Let x 2 , x ′ 2 and x ′′ 2 the squares of the real parts of solutions of (20). √ � 1 / 2 � 3 4( a 1 − a 2 ) 2 + ( r + 1 3 2 x 2 2( a 1 − a 2 )) 2 = + 2 ( a 1 − a 2 ) , √ � 1 / 2 � 3 1 + ( r + 1 3 2 x ′ 2 4( a 2 2 a 1 + a 2 ) 2 = − 2 a 1 , √ � 1 / 2 � 3 2 + ( r − a 1 − 1 3 2 x ′′ 2 4( a 2 2 a 2 ) 2 = + 2 a 2 . 2 x 2 > 2 x ′′ 2 > 2 x ′ 2 . The equation (20) admits six simple solutions ±√ w n R 1 , ±√ w n R 2 , ±√ w n R 3 , with 0 < Re ( R 3 ) < Re ( R 2 ) < Re ( R 1 ) . Farhat Shel Stability of some string-beam systems

  66. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Proof 3 √ w n R k x + b k e −√ w n R k x ) . � u 2 , n = ( d k e k =1 Return back to (18), 3 √ w n R k x + b k e −√ w n R k x ) � β∂ 2 x θ 2 , n = w 2 ( − 1 + α R 4 k )( d k e n k =1 Then there exist two constants a ′ and b ′ such that 3 ( − 1 √ w n R k x + b k e −√ w n R k x ) + a ′ x + b ′ . � + α R 2 βθ 2 , n = w n k )( d k e R 2 k k =1 Moreover, the equation (19) is verified if and only if a ′ = b ′ = 0 . Farhat Shel Stability of some string-beam systems

  67. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Proof The transmission and boundary conditions are expressed as follow 3 3 � � ( d k + b k ) = c 2 , R k ( d k − b k ) = 0 , (21) k =1 k =1 3 1 1 w 3 / 2 � α ( d k − b k ) = − + w n c 1 , (22) n R k 2 w n k =1 3 3 1 √ wnRk π + b k e −√ wnRk π ) = 0 , � + α R 2 � ( − k )( d k + b k ) = 0 , ( d k e (23) R 2 k =1 k =1 k 3 3 1 √ wnRk π + b k e −√ wnRk π ) √ wnRk π + b k e −√ wnRk π ) = 0 , R 2 � � k ( d k e = 0 , ( d k e (24) R 2 k =1 k =1 k π c 1 sin( β n π ) + ( − + c 2 ) cos( β n π ) = 0 . (25) 2 β n Farhat Shel Stability of some string-beam systems

  68. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Proof After some calculus 1 π √ wn ( R 1+2 R 2) π + ... √ wn ( R 1+2 R 2) π + ... � � + β n c 1 ) = w 3 / 2 � � 2 a 4 e ( − ( − c 1 tan( β n π )) a 3 e . n 2 β n 2 β n and then w 3 / 2 2 a 4 ( − 1 c 1 tan( β n π ) ∼ π + β n c 1 ) + a 3 w 3 / 2 n . n 2 β n 2 β n Hence, with β n = 2 n + 1 n , tan( β n π ) = π n + ... = π √ α 1 w 3 / 2 ( − 1 √ w n . + β n c 1 ) ∼ π n 2 β n 4 a 4 4 a 4 β n The real part of the inner product of (6) with ( π − x ) ∂ x u 1 , n gives � π π 1 2 π 1 � � | w n c 2 | 2 = − � 2 + ( w 2 � 2 ) + Re ( � � � � � � − � − + w n c 1 − � u 1 , n � ∂ x u 1 , n sin( w n x )( π − x ) ∂ x u 1 , n dx ) . � � n 2 2 w n 2 2 � 0 In conclusion y n is not bounded. Farhat Shel Stability of some string-beam systems

  69. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Polynomial stability Theorem If the string is purely elastic, then the system ( S ) is polynomially stable. More precisely, (for every γ < 2 ) there exists c > 0 such that � S ( t ) y 0 � ≤ 1 t γ � y 0 � D ( A ) . Farhat Shel Stability of some string-beam systems

  70. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Proof Let 1 > α > 1 2 . It suffices to prove that (5) holds. Suppose the conclusion is false. Then there exists a sequence ( w n ) of real numbers, with w n − → + ∞ and a sequence of vectors ( y n ) = ( u n , v n , θ n ) in D ( A ) with � y n � H = 1, such that � w α n ( i w n I − A ) y n � H − → 0 which is equivalent to w α in H 1 , n ( i w n u 1 , n − v 1 , n ) = f 1 , n − → 0 , (26) w α i w n v 1 , n − α 1 ∂ 2 in L 2 , � � x u 1 , n = g 1 , n − → 0 (27) n and w α in H 2 , n ( i w n u 2 , n − v 2 , n ) = f 2 , n − → 0 , (28) w α i w n v 2 , n + α 2 ∂ 4 x u 2 , n − β 2 ∂ 2 in L 2 , � � x θ 2 , n = g 2 , n − → 0 , (29) n w α i w n θ 2 , n + β 2 ∂ 2 x v 2 , n − κ 2 ∂ 2 in L 2 . � � = h 2 , n − → 0 , (30) x θ 2 , n n Farhat Shel Stability of some string-beam systems

  71. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Substituting (26) into (27) and (28) into (30) respectively to get w α w 2 n u 1 , n + α 1 ∂ 2 � � x u 1 , n = − g 1 , n − i w n f 1 , n , (31) n � θ 2 , n − 1 � 1 w α κ 2 ∂ 2 x θ 2 , n + β 2 ∂ 2 ( h 2 , n + ∂ 2 x u 2 , n = x f 2 , n ) (32) n i w n i w n First, w α/ 2 ∂ x θ 2 , n converge to 0 in L 2 (0 , ℓ 2 ). Then w α/ 2 θ 2 , n n n converge to 0 in L 2 (0 , ℓ 2 ) since θ 2 , n (0) = 0 . Farhat Shel Stability of some string-beam systems

  72. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Substituting (26) into (27) and (28) into (30) respectively to get w α w 2 n u 1 , n + α 1 ∂ 2 � � x u 1 , n = − g 1 , n − i w n f 1 , n , (31) n � θ 2 , n − 1 � 1 w α κ 2 ∂ 2 x θ 2 , n + β 2 ∂ 2 ( h 2 , n + ∂ 2 x u 2 , n = x f 2 , n ) (32) n i w n i w n First, w α/ 2 ∂ x θ 2 , n converge to 0 in L 2 (0 , ℓ 2 ). Then w α/ 2 θ 2 , n n n converge to 0 in L 2 (0 , ℓ 2 ) since θ 2 , n (0) = 0 . 1 ∂ 2 Multiplying (32) by x u 2 , n w α/ 2 n � 2 + w α/ 2 β 2 w α/ 2 � ∂ 2 θ 2 , n , ∂ 2 � � � � x u 2 , n x u 2 , n (33) n n x u 2 , n (0) − i κ 2 w α/ 2 − 1 − i κ 2 w α/ 2 − 1 ∂ x θ 2 , n (0) ∂ 2 ∂ x θ 2 , n , ∂ 3 � � x u 2 , n = 0 . n Then we prove that � 2 − β 2 w α/ 2 � ∂ 2 � � x u 2 , n → 0 . n Farhat Shel Stability of some string-beam systems

  73. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Proof � v 2 , n � 2 → 0 . Using (29) we prove that w α/ 8 n Farhat Shel Stability of some string-beam systems

  74. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Proof � v 2 , n � 2 → 0 . Using (29) we prove that w α/ 8 n We built two sequences of positive numbers r m and s m such that w r m / 2 � → 0 , w r m / 2 � θ 2 , n � → 0 , w s m / 2 � � ∂ 2 � x u 2 , n � v 2 , n � → 0 n n n Farhat Shel Stability of some string-beam systems

  75. Introduction Abstract setting Feedback stabilization Asymptotic behavior Thermoelastic case Proof � v 2 , n � 2 → 0 . Using (29) we prove that w α/ 8 n We built two sequences of positive numbers r m and s m such that w r m / 2 � → 0 , w r m / 2 � θ 2 , n � → 0 , w s m / 2 � � ∂ 2 � x u 2 , n � v 2 , n � → 0 n n n and r m and s m converge to 1 + α . Farhat Shel Stability of some string-beam systems

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend