upper tails of self intersection local times survey of
play

Upper tails of self-intersection local times: survey of proof - PowerPoint PPT Presentation

Weierstra-Institut fr Angewandte Analysis und Stochastik Upper tails of self-intersection local times: survey of proof techniques Wolfgang Knig TU Berlin and WIAS Berlin Mohrenstrae 39 10117 Berlin Tel. 030 20372 0


  1. Weierstraß-Institut für Angewandte Analysis und Stochastik Upper tails of self-intersection local times: survey of proof techniques Wolfgang König TU Berlin and WIAS Berlin Mohrenstraße 39 · 10117 Berlin · Tel. 030 20372 0 · www.wias-berlin.de · Luminy, 6 December 2010

  2. The Model � Simple random walk ( S n ) n ∈ N 0 on Z d � Local times ℓ n ( z ) = ∑ n i = 0 1 l { S i = z } for n ∈ N , z ∈ Z d � p -norm of local times � ℓ n � p = ( ∑ z ∈ Z d ℓ n ( z ) p ) 1 / p For p ∈ N , we have the p -fold self-intersection local time (SILT): n ∑ � ℓ n � p 1 l { S i 1 = ··· = S ip } , p = i 1 ,..., i p = 0 Typical behaviour [C ERNY 2007] for d = 2 and [B ECKER /K ÖNIG 2009] for d ≥ 3 :  n ( p + 1 ) / 2 if d = 1 ,   E [ � ℓ n � p  n ( log n ) p − 1 p ] ∼ Ca ( n ) , a ( n ) = if d = 2 , where  if d ≥ 3 . n   Upper tails of self-intersection local times · Luminy, 6 December 2010 · Seite 2 (15)

  3. Goal Goal: Asymptotics of 1 n log P ( � 1 n ℓ n � p ≥ r n ) , n → ∞ , for ( nr n ) p − E [ � ℓ n � p p ] → ∞ . � very large deviations: ( nr n ) p ≫ a ( n ) � large deviations: ( nr n ) p ∼ γ a ( n ) with γ > C What is the best path strategy to produce many self-intersections? Upper tails of self-intersection local times · Luminy, 6 December 2010 · Seite 3 (15)

  4. Rough Heuristics (1) (only very large-deviations case ( nr n ) p ≫ a ( n ) ) Strategy to meet {� 1 n ℓ n � p ≥ r n } : The path fills a ball B α n of radius 1 ≪ α n ≪ n 1 / d within a time interval [ 0 , t n ] ⊂ [ 0 , n ] in order to produce ( nr n ) p self-intersections, and runs freely afterwards. Upper tails of self-intersection local times · Luminy, 6 December 2010 · Seite 4 (15)

  5. Rough Heuristics (1) (only very large-deviations case ( nr n ) p ≫ a ( n ) ) Strategy to meet {� 1 n ℓ n � p ≥ r n } : The path fills a ball B α n of radius 1 ≪ α n ≪ n 1 / d within a time interval [ 0 , t n ] ⊂ [ 0 , n ] in order to produce ( nr n ) p self-intersections, and runs freely afterwards. Then ℓ n ( z ) ≈ ℓ t n ( z ) ≍ t n α − d for z ∈ B α n n Upper tails of self-intersection local times · Luminy, 6 December 2010 · Seite 4 (15)

  6. Rough Heuristics (1) (only very large-deviations case ( nr n ) p ≫ a ( n ) ) Strategy to meet {� 1 n ℓ n � p ≥ r n } : The path fills a ball B α n of radius 1 ≪ α n ≪ n 1 / d within a time interval [ 0 , t n ] ⊂ [ 0 , n ] in order to produce ( nr n ) p self-intersections, and runs freely afterwards. Then ℓ n ( z ) ≈ ℓ t n ( z ) ≍ t n α − d for z ∈ B α n n and p ≈ ∑ n α d ( 1 − p ) t n ≍ nr n α d ( p − 1 ) / p ( nr n ) p ≍ � ℓ n � p ℓ t n ( z ) p ≍ α d n ( t n α − d n ) p = t p i.e., , . n n z ∈ B α n Upper tails of self-intersection local times · Luminy, 6 December 2010 · Seite 4 (15)

  7. Rough Heuristics (1) (only very large-deviations case ( nr n ) p ≫ a ( n ) ) Strategy to meet {� 1 n ℓ n � p ≥ r n } : The path fills a ball B α n of radius 1 ≪ α n ≪ n 1 / d within a time interval [ 0 , t n ] ⊂ [ 0 , n ] in order to produce ( nr n ) p self-intersections, and runs freely afterwards. Then ℓ n ( z ) ≈ ℓ t n ( z ) ≍ t n α − d for z ∈ B α n n and p ≈ ∑ n α d ( 1 − p ) t n ≍ nr n α d ( p − 1 ) / p ( nr n ) p ≍ � ℓ n � p ℓ t n ( z ) p ≍ α d n ( t n α − d n ) p = t p i.e., , . n n z ∈ B α n and − log P ( S [ 0 , t n ] ⊂ B α n ) ≍ t n d p ( p − 1 ) − 2 ≍ nr n α . n α 2 n Upper tails of self-intersection local times · Luminy, 6 December 2010 · Seite 4 (15)

  8. Rough Heuristics (1) (only very large-deviations case ( nr n ) p ≫ a ( n ) ) Strategy to meet {� 1 n ℓ n � p ≥ r n } : The path fills a ball B α n of radius 1 ≪ α n ≪ n 1 / d within a time interval [ 0 , t n ] ⊂ [ 0 , n ] in order to produce ( nr n ) p self-intersections, and runs freely afterwards. Then ℓ n ( z ) ≈ ℓ t n ( z ) ≍ t n α − d for z ∈ B α n n and p ≈ ∑ n α d ( 1 − p ) t n ≍ nr n α d ( p − 1 ) / p ( nr n ) p ≍ � ℓ n � p ℓ t n ( z ) p ≍ α d n ( t n α − d n ) p = t p i.e., , . n n z ∈ B α n and − log P ( S [ 0 , t n ] ⊂ B α n ) ≍ t n p ( p − 1 ) − 2 d ≍ nr n α . n α 2 n Optimal choices: p 2 p  2 p � n if d < d ( 1 − p ) r if d < p − 1 , p − 1 ,  n t n ≍ α n ≍ and , 2 p 2 p nr n if d > 1 if d > p − 1 , p − 1 .  Upper tails of self-intersection local times · Luminy, 6 December 2010 · Seite 4 (15)

  9. Rough Heuristics (2) Hence, we conjecture Theorem A. 2 p  2 p − 1 n ℓ n � p ≥ r n ) ≍ 1 ≍ 1 2 p t n d ( p − 1 ) ∨ 1 d ( p − 1 ) r if d < p − 1 , n log P ( � 1  n ≍ r ≍ n α 2 α 2 n 2 p r n if d > n n p − 1 .  Upper tails of self-intersection local times · Luminy, 6 December 2010 · Seite 5 (15)

  10. Rough Heuristics (2) Hence, we conjecture Theorem A. 2 p  2 p − 1 n ℓ n � p ≥ r n ) ≍ 1 ≍ 1 2 p t n d ( p − 1 ) ∨ 1 d ( p − 1 ) r if d < p − 1 , n log P ( � 1  n ≍ r ≍ n α 2 α 2 n 2 p r n if d > n n p − 1 .  � Lower-critical dimension: homogeneous squeezing on a large area. � Upper-critical dimension: short-time clumping on finitely many sites. Upper tails of self-intersection local times · Luminy, 6 December 2010 · Seite 5 (15)

  11. Precise heuristics (1) 2 p First subcritical dimensions d < p − 1 . Scaled normalized version of ℓ n : L n ( x ) = α d n for x ∈ R d . ⌊ x α n ⌋ � � n ℓ n , Upper tails of self-intersection local times · Luminy, 6 December 2010 · Seite 6 (15)

  12. Precise heuristics (1) 2 p First subcritical dimensions d < p − 1 . Scaled normalized version of ℓ n : L n ( x ) = α d n for x ∈ R d . ⌊ x α n ⌋ � � n ℓ n , Weak large-deviation principle (in the spirit of D ONSKER -V ARADHAN ) with speed n α − 2 and rate function n I ( f ) = 1 � 2 � ∇ f � � 2 , 2 i.e., − n � � �� P ( L n ∈ · ) = exp f 2 ∈· I ( f )+ o ( 1 ) inf . α 2 n Upper tails of self-intersection local times · Luminy, 6 December 2010 · Seite 6 (15)

  13. Precise heuristics (1) 2 p First subcritical dimensions d < p − 1 . Scaled normalized version of ℓ n : L n ( x ) = α d n for x ∈ R d . ⌊ x α n ⌋ � � n ℓ n , Weak large-deviation principle (in the spirit of D ONSKER -V ARADHAN ) with speed n α − 2 and rate function n I ( f ) = 1 � 2 � ∇ f � � 2 , 2 i.e., − n � � �� P ( L n ∈ · ) = exp f 2 ∈· I ( f )+ o ( 1 ) inf . α 2 n Note that d ( 1 − p ) ℓ n ( z ) p � 1 / p � p � 1 / p � z � ∑ = n α − d � ∑ L n = n α p � L n � p = nr n � L n � p . � ℓ n � p = n n α n z ∈ Z d z ∈ Z d Upper tails of self-intersection local times · Luminy, 6 December 2010 · Seite 6 (15)

  14. Precise heuristics (1) 2 p First subcritical dimensions d < p − 1 . Scaled normalized version of ℓ n : L n ( x ) = α d n for x ∈ R d . ⌊ x α n ⌋ � � n ℓ n , Weak large-deviation principle (in the spirit of D ONSKER -V ARADHAN ) with speed n α − 2 and rate function n I ( f ) = 1 � 2 � ∇ f � � 2 , 2 i.e., − n � � �� P ( L n ∈ · ) = exp f 2 ∈· I ( f )+ o ( 1 ) inf . α 2 n Note that d ( 1 − p ) ℓ n ( z ) p � 1 / p � p � 1 / p � z � ∑ = n α − d � ∑ L n = n α p � L n � p = nr n � L n � p . � ℓ n � p = n n α n z ∈ Z d z ∈ Z d Hence, 2 p n {� 1 � L n � p ≥ 1 d ( p − 1 ) n ℓ n � p ≥ r n } = and = nr � � . n α 2 n Upper tails of self-intersection local times · Luminy, 6 December 2010 · Seite 6 (15)

  15. Precise Heuristics (2) 2 p Hence, we conjecture, for d < p − 1 , Theorem B. 2 p d ( 1 − p ) r n log P ( � 1 lim n ℓ n � p ≥ r n ) = − χ d , p , n → ∞ n where � 1 2 � ∇ f � 2 2 : f ∈ H 1 ( R d ) , � f 2 � p = 1 = � f � 2 � χ d , p = inf . Upper tails of self-intersection local times · Luminy, 6 December 2010 · Seite 7 (15)

  16. Precise Heuristics (2) 2 p Hence, we conjecture, for d < p − 1 , Theorem B. 2 p d ( 1 − p ) r n log P ( � 1 lim n ℓ n � p ≥ r n ) = − χ d , p , n → ∞ n where � 1 2 � ∇ f � 2 2 : f ∈ H 1 ( R d ) , � f 2 � p = 1 = � f � 2 � χ d , p = inf . Remark: χ d , p > 0 d ( p − 1 ) ≤ 2 p [G ANTERT /K ÖNIG /S HI 2004] ⇐ ⇒ . Upper tails of self-intersection local times · Luminy, 6 December 2010 · Seite 7 (15)

  17. Precise Heuristics (3) 2 p Now supercritical dimensions d > p − 1 . We approximate � 1 p ≥ 1 {� 1 �� � � n ℓ n � p ≥ r n } ≈ � ℓ st n � p ≥ nr n � � = ℓ st n . � � st n s � Upper tails of self-intersection local times · Luminy, 6 December 2010 · Seite 8 (15)

  18. Precise Heuristics (3) 2 p Now supercritical dimensions d > p − 1 . We approximate � 1 p ≥ 1 {� 1 �� � � n ℓ n � p ≥ r n } ≈ � ℓ st n � p ≥ nr n � � = ℓ st n . � � st n s � 1 st n ℓ st n satisfies a large-deviation principle with scale st n and some rate function Now I ( d ) . Upper tails of self-intersection local times · Luminy, 6 December 2010 · Seite 8 (15)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend