thermodynamic formalism
play

Thermodynamic Formalism: Ergodic theory and validated numerics - PowerPoint PPT Presentation

Thermodynamic Formalism: Ergodic theory and validated numerics Dvoretzky coverings Ai-Hua FAN Univ. Picardie, France CIRM, July 8-12, 2019 Ai-Hua FAN TPWWT 1/26 Outline General problem 1 Classical Dvoretzky covering 2 -Dvoretzky


  1. Thermodynamic Formalism: Ergodic theory and validated numerics Dvoretzky coverings Ai-Hua FAN Univ. Picardie, France CIRM, July 8-12, 2019 Ai-Hua FAN TPWWT 1/26

  2. Outline General problem 1 Classical Dvoretzky covering 2 µ -Dvoretzky covering : µ absolutely continuous 3 Ai-Hua FAN TPWWT 2/26

  3. General problem Ai-Hua FAN TPWWT 3/26

  4. General problem Setting ( X, d ) : a complete metric space ( x n ) n ≥ 1 ⊂ X : a sequence of centers ( r n ) n ≥ 1 ⊂ R + : a sequence of radius µ : a (reference) measure on X Study subjects : (limsup set/infinitely covered set) J := lim sup n →∞ B ( x n , r n ) , F := X \ J . Question 1 : J =? µ ( J = X ?, J = X ?, dim J = ?) Question 2 : F =? µ ( F = ∅ ?, F = ∅ ?, dim F = ?) NB Different from shrinking target problem (Borel-Cantelli lemma). Ai-Hua FAN TPWWT 4/26

  5. Simple Properties of J and F Different points of view of J : � ∞ covering : { y ∈ X : 1 B ( x n ,r n ) ( y ) = ∞} n =1 � ∞ hitting : { y ∈ X : 1 B ( y,r n ) ( x n ) = ∞} . n =1 ( x n ) dense ⇒ J Baire set (so J � = ∅ ) � µ ( B ( x n , r n )) < ∞ ⇒ µ ( J ) = 0 dim µ J ≤ sup { τ > 0 : � µ ( B ( x n , r n ) τ = ∞} µ r n = r, x n = T n x, µ ergodic ⇒ J ( x ) = X a.e. Ai-Hua FAN TPWWT 5/26

  6. Example 1 Homogeneous diophantine approximation { x n } = { p q } = Q ∩ (0 , 1) naturally ordered r n = φ ( q ) when x n = p q J { x ∈ T : � qx � < qφ ( q ) i.o. } = = T if φ ( q ) ↓ , � qφ ( q ) = ∞ Leb Khintchine : J 1 Dirichlet : J = T if φ ( q ) = q 2 Jarnik : dim J = 2 1 ν if φ ( q ) = q v with v > 2 . Ai-Hua FAN TPWWT 6/26

  7. Example 2 Inhomogeneous diophantine approximation x n = nα (mod 1) ( α �∈ Q ), r n = ψ ( n ) J ( α ) = { x ∈ T : � x − nα � < ψ ( n ) i.o. } Borel-Cantelli : λ ( J ( α )) = 0 if � ψ ( q ) < ∞ Bugeaud, Schemeling-Troubetzkoy (2003) : dim( J ( α )) = 1 τ if ψ ( q ) = 1 n τ with τ > 1 Fan-Wu (2006) : General sequence { ψ ( n ) } : • a.e. α , ∀ ψ ( n ) ↓ log n � ψ ( n ) s < ∞ � � dim J ( α ) = inf s > 0 : = lim sup (1) − log ψ ( n ) • ∃ α , ∃ ψ ( n ) ↓ s.t (1) is false. But No exceptional α if the limit exists. Ai-Hua FAN TPWWT 7/26

  8. Example 3 (Fan-Schmeling-Troubetzkoy) Dynamical diophantine approximation Model Tx = 2 x mod 1 defined on T . µ φ , µ ψ Gibbs measures. a x n = T n x , r n = n τ ( a > 0 , τ > 0 ) � � y ∈ T : � y − 2 n x � < a J ( x ) := i.o. n τ � For µ φ -a.e. x, we have J ( x ) = T if 1 τ > e + := sup µ ( − φ ) dµ. � µ ψ = T if 1 For µ φ -a.e. x, we have J ( x ) τ > h ( µ φ | µ ψ ) := ( − ψ ) dµ ψ . The two values are optimal. NB 1. Generalization to Markov interval maps (L. M. Liao and S. Seuret). a 2. No result for ℓ n = n 1 /e + . Ai-Hua FAN TPWWT 8/26

  9. Classical Dvoretzky covering Ai-Hua FAN TPWWT 9/26

  10. Dvoretzky Random covering Model (1956) X = T : the unit circle ; x n = ω n : independent, identically and uniformly distributed ; ℓ n = 2 r n ↓ 0 Partial results Dvoretzky (1956) : ∃ ℓ n s. t. J ( ω ) = T a.s. Kahane (1959) : ℓ n = 1+ ǫ ⇒ J ( ω ) = T a.s. n ℓ n = 1 − ǫ ⇒ J ( ω ) � = T a.s. Billard (1963) : n Kahane(1968) : ℓ n = 1 − ǫ ⇒ dim F ( ω ) = ǫ a.s. n os, Orey, Mandelbrot : ℓ n = 1 Billard, Erd¨ n Fan-Wu (2004) / A. Durand (2008) : Assume � ℓ n < ∞ . Then � ℓ s a.s. dim J ( ω ) = inf { s > 0 : n < ∞} . (also follows from the mass transfer principle of from Beresnevich-Velani 2006 ). Ai-Hua FAN TPWWT 10/26

  11. Complete solutions : Shepp condition/Kahane condition Theorem (L. Shepp, 1972) The circle is a.s. covered (i.e. J ( ω ) = T a.s. ) iff � ∞ 1 n 2 e ℓ 1 + ··· + ℓ n = ∞ . n =1 Theorem (J. P. Kahane, 1987) A compact set F is a.s. covered (i.e. J ( ω ) ⊃ F a.s. ) iff � ( ℓ n − | t | ) + Cap Φ F = 0 , where Φ( t ) = exp � � Φ -energy : I µ Φ := Φ( t − s ) dµ ( t ) dµ ( s ) . Cap Φ F = 0 means I µ Φ = ∞ for all probability measures µ supported by F . � Shepp’s condition means Φ( t ) dt = ∞ . Ai-Hua FAN TPWWT 11/26

  12. Proof of the necessity : main lines Billard martingale method/Multiplicative chaos Consider the (positive) martingales n � 1 − 1 (0 ,ℓ k ) ( t − ω k ) ∀ t ∈ T , Q n ( t ) := . 1 − ℓ k k =1 � M n := Q n ( t ) dt. T Q n ( t ) = 0 iff t ∈ ω k + (0 , ℓ k ) for some 1 ≤ k ≤ n . ⇒ T is not covered. lim M n > 0 = E M 2 n = O (1) = ⇒ lim M n > 0 a.s. � E M 2 n = O (1) ⇐ ⇒ Φ( t ) dt = ∞ (Shepp’s condition). For the necessity of Kahane’s condition, we need the equilibrium measure σ F instead of the Lebesgue measure and consider � M n := Q n ( t ) dσ F ( t ) . F Ai-Hua FAN TPWWT 12/26

  13. Potential theory/Equilibrium measure Define the potential � U µ Φ ( t ) := Φ ∗ µ ( t ) = Φ( t − s ) dµ ( s ) . and the capacity Cap Φ ( F ) := 1 /I Φ ( E ) where I Φ ( E ) := inf µ I µ Φ . Theorem (Kahane-Salem, Ensembles parfaits et s´ eries trigonometriques) � Φ( n ) ≥ 0 . Φ = � � I µ µ ( n ) | 2 . Φ( n ) | � If I Φ ( F ) < ∞ , there exists a unique probability σ F such that I σ F = I Φ ( F ) . Φ { t ∈ T : U σ F Φ ( t ) < I Φ ( F ) } is of zero measure for any measure of finite energy. NB 1. σ F is called the equilibrium measure of F ; the last property is useful in the proof of sufficiency of Kahane’s condition. 2. Results hold for all convex kernel Φ defined in (0 , 1) . Ai-Hua FAN TPWWT 13/26

  14. Proof of the sufficiency : ideas Dvoretzky covering is equivalent to Poisson covering (JPK). Poisson process ( X n , Y n ) on R × R + associated to dt ⊗ � δ ℓ n . Possion covering problem : R = � ( X n , X n + Y n ) a.s. ? (B.M.) Consider a cloded set F ⊂ T and the martingale � ∞ e − t 1 t �∈ G ǫ d � M ǫ := σ ǫ ( t ) . 0 where G ǫ := ∪ Y n ≥ ǫ ( X n , X n + Y n ) σ ǫ : equilibrium measure of F associated to Φ ǫ Φ ǫ ( t ) := exp � ℓ n ≥ ǫ ( ℓ n − | t | ) + σ ǫ : periodization of σ ǫ . � ℓn ≥ ǫ ℓ n � ∞ First way to compute I ǫ := E M ǫ : I ǫ = e − � e − t d � σ ǫ ( t ) . 0 Second way to compute I ǫ : involving the stopping time (S. Janson) τ ǫ = inf { t > 0 : t �∈ G ǫ } . a.s. lim ǫ → 0 τ ǫ = + ∞ . Ai-Hua FAN TPWWT 14/26

  15. Multiplicative chaos operators (JPK, 1987, Chin. Ann. Math.) Recall the martingales � n 1 − 1 (0 ,ℓ k ) ( t − ω k ) ∀ t ∈ T , Q n ( t ) := . 1 − ℓ k k =1 For any finite measure σ ∈ M ( T ) , define the random measure Qσ � Qσ ( A ) := lim Q n ( t ) dσ ( t ) ( ∀ A ∈ B ( T )) . n A The multiplicative chaos operator E Q : M ( T ) → M ( T ) is defined by E Qσ ( A ) := E [ Qσ ( A )] ( ∀ A ∈ B ( T )) . NB . (Fan 2001 /Barral-Fan 2005 ) Similar operators Q a , E Q a are defined for the martingales (producing ”Gibbs measures”) n � a 1 (0 ,ℓk ) ( t − ω k ) Q a n ( t ) = ( a > 0 a parameter) . 1 + ( a − 1) ℓ k k =1 Ai-Hua FAN TPWWT 15/26

  16. Multiplicative chaos operators (continued) Theorem (Kahane/Fan) E Q is a projection ; M ( T ) = Im E Q ⊕ Ker E Q . σ ∈ Ker E Q iff σ is supported by a set of Φ -capacity zero. σ ∈ Im E Q iff σ = � k σ k with I σ k Φ < ∞ . Assume that Q ′ , Q ′′ come from two sequences { ℓ ′ n } and { ℓ ′′ n } . Let σ ′ , σ ′′ ∈ M ( T ) , σ ′′ ∈ Im E Q ′′ and σ ′ ≪ σ ′′ . Then (1) � | ℓ ′ ⇒ Q ′ σ ′ ⊥ Q ′′ σ ′′ . n − ℓ ′′ n | = ∞ = (2) � | ℓ ′ ⇒ Q ′ σ ′ ≪ Q ′′ σ ′′ . n − ℓ ′′ n | < ∞ = Assume Q ′ , Q ′′ comes from two independent models, Q is the ”mixture”. Then (a) Qσ = Q ′′ Q ′ σ a.s. for any measure σ ∈ M ( T ) . (b) E Q = E Q ′′ E Q ′ = E Q ′ E Q ′′ . (c) σ ∈ Im E Q ⇒ Q ′ σ ∈ Im E Q ′′ for almost all ω ′ ∈ Ω ′ . (d) σ ∈ Ker E Q ⇒ Q ′ σ ∈ Ker E Q ′′ for almost all ω ′ ∈ Ω ′ . dim Qλ = inf { τ > 0 : � n 2 − τ e ℓ 1 + ··· ℓ n = ∞} = 1 − lim sup ℓ 1 + ··· + ℓ n . log n NB Similar results for percolation on trees (Fan). Ai-Hua FAN TPWWT 16/26

  17. L. Carleson problem Question When T is infinitely covered, how to describe the infinity ? A. H. Fan (1989) : two ways n � N n ( t ) := 1 (0 ,ℓ k ) ( t − ω k ) =? k =1 ∞ ∞ � � ∀ ( a n ) ⊂ R + , a n = ∞ , S ( t ) := a n 1 (0 ,ℓ k ) ( t − ω k ) = ∞ ? n =1 k =1 Fan-Kahane (1993) for ℓ n = 1+ ǫ : a.s. ∀ t, N n ( t ) ≈ log n ; n ∞ ∞ a n a n � � n = ∞ = ⇒ a.s. ∀ t, S ( t ) = ∞ ; n < ∞ = ⇒ a.s. ∀ t, S ( t ) < ∞ . n =1 n =1 Fan (2001), Barral-Fan (2005) : a.s. N n ( t ) multifractally behaves. Ai-Hua FAN TPWWT 17/26

  18. Multifractality of N n ( t ) � � N n ( t ) F β := t ∈ T : lim ℓ 1 + · · · + ℓ n = β , n →∞ � n j =1 ℓ j α := lim sup − log ℓ n . n →∞ d α ( β ) := 1 + α ( β − 1 − β log β ) Theorem (Barral-Fan 2005) a (Slow like ℓ n = n log n ) If lim sup n →∞ nℓ n < ∞ and α = 0 , then a.s ∀ β ≥ 0 , dim( F β ) = 1 . (2) (Normal like ℓ n = a n ) If lim sup n →∞ nℓ n < ∞ and 0 < α < ∞ , then a.s ∀ β ≥ 0 ( d α ( β ) > 0) , dim( F β ) = d α ( β ) . (3) (Rapide like ℓ n = a log n ) If lim sup n →∞ nℓ n = ∞ , then n N n ( t ) a.s ∀ t ∈ T , lim = 1 . (4) ℓ 1 + · · · + ℓ n Ai-Hua FAN TPWWT 18/26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend