7 entropy as a thermodynamic variable s 1
play

7. Entropy as a Thermodynamic Variable S 1 gives us T E d T /W =0 - PowerPoint PPT Presentation

7. Entropy as a Thermodynamic Variable S 1 gives us T E d T /W =0 Other derivatives give other thermodynamic variables. P dV d /W = S dA + HdM + E d P + X i dx i i F


  1. 7. Entropy as a Thermodynamic Variable ∂S 1 � � gives us T ≡ ∂E d T /W =0 Other derivatives give other thermodynamic variables. ⎧ ⎫ − P dV ⎪ ⎪ ⎪ ⎪ ⎨ ⎬ d /W = S dA + HdM + E d P + · · · ≡ X i dx i ⎪ ⎪ i F dL ⎪ ⎪ ⎩ ⎭ 8.044 L9B1

  2. We chose to use the extensive external variables (a complete set) as the constraints on Ω. Thus S ≡ k ln Ω = S ( E, V, M, · · · ) Now solve for E . S ( E, V, M, · · · ) ↔ E ( S, V, M, · · · ) We know from the 1 ST law dE | d = d /Q /W =0 utilizing the 2 ND law dE | d /W =0 ≤ T dS 8.044 L9B2

  3. Now include the work. dE = d /Q + d /W dE ≤ T dS + d /W    − P dV      dE ≤ T dS + S dA + HdM + E d P + · · ·  F dL      The last line expresses the combined 1 ST and 2 ND laws of thermodynamics. 8.044 L9B3

  4. Solve for dS . 1 P H E dS = dE + dV − dM − d P + · · · T T T T Examine the partial derivatives of S . ∂S H ∂S = 1 = − ∂M T ∂E T E,V, P V,M, P ⎛ ⎞ ⎝ ∂S X j ∂S = P = − ⎠ ∂x j E,x i T ∂V T E,M, P = x j 8.044 L9B4

  5. INTERPRETATION S(E,V) � ∂S � ∂S � � dS = dE + dV V ∂E ∂V V E = 1 T dE + P T dV E 8.044 L9B5

  6. UTILITY Internal Energy   ∂S ( E, V, N ) 1 = → T ( E, V, N ) ↔ E ( T, V, N )   ∂E T V Equation of State   ∂S ( E, V, N ) P = → P ( E, T, V, N ) → P ( T, V, N )   ∂V T E 8.044 L9B6

  7. Example Ideal Gas ⎧ ⎫ 3 / 2 4 E ⎪ ⎪ ⎨ ⎬ S ( E, N, V ) = k ln Φ = kN ln V πem 3 N ⎪ ⎪ ⎩ ⎭ ∂S kN {} kN P = = = ∂V {} V V T E,N PV = NkT 8.044 L9B7

  8. COMBINATORIAL FACTS # different orderings (permutations) of K distin- guishable objects = K ! # of ways of choosing L from a set of K : K ! if order matters ( K − L )! K ! if order does not matter L !( K − L )! 8.044 L9B8a

  9. EXAMPLE Dinner Table, 5 Chairs (places) Seating, 5 people 5 · 4 · 3 · 2 · 1 = 5! = 120 5 · 4 · 3 = 5! = 60 Seating, 3 people 2! 5 · 4 · 3 / 6 = 5! 1 Place settings, 3 people 3! = 10 2! 8.044 L9B8b

  10. ������������������������� ����������������������������������� ������ � ��� > ����� � ���� � ε ��� � ε � �� � ��� > � 8.044 L9B9

  11. ����������������� ����������������� ������������������� ������ ε � ε � ε � ������� � �� ��������������������������������� 8.044 L9B10

  12. 1 when N 1 = 0 or N N ! Ω( E ) = N 1 !( N − N 1 )! Maximum when N 1 = N/ 2 T= (or - ) S(E) S ( E ) = k ln Ω( E ) E = ε N E = ε N/2 T=0 E T>0 T<0 8.044 L9B11

  13. ln N ! ≈ N ln N − N S ( E ) = k [ N ln N − N 1 ln N 1 − ( N − N 1 ) ln( N − N 1 ) − N + N 1 + N − N 1 ] 1 ∂S ∂S ∂N 1 k = = = [ − 1 − ln N 1 + 1 + ln( N − N 1 )] T ∂E ∂N 1 , ∂E E N af � 1 /E ⎛ ⎞ ⎛ ⎞ k N − N 1 k N = ln = ln − 1 ⎝ ⎠ ⎝ ⎠ E N 1 E N 1 8.044 L9B12

  14. N N E/kT − 1 = e → N 1 = E/kT + 1 N 1 e EN E = EN 1 = E/kT + 1 e N 1 /N or E/ ε N 1.0 −ε /kT ~ ~ e 0.5 4 2 1 3 kT/ ε 8.044 L9B13

  15. E/kT � 2 ∂E E e � C ≡ = Nk ( e E/kT + 1) 2 ∂T kT � 2 � 2 E Nk E � � − E/kT → Nk e low T , high T → 4 kT kT 0.5 C/Nk 0.4 0.3 0.2 0.1 1 2 3 kT/ ε 4 8.044 L9B14

  16. p ( n ) = Ω ' p ( n ) =? n = 0 , 1 Ω In Ω ' N → N − 1 and N 1 → N 1 − n ( N − 1)! ( N 1 − n )!( N − 1 − N 1 + n )! p ( n ) = N ! N 1 !( N − N 1 )! 8.044 L9B15

  17. ( N − 1)! N 1 ! ( N − N 1 )! p ( n ) = N ! ( N 1 − n )! ( N − N 1 − 1 + n )! � �� � � �� � � �� � 1 /N 1 n = 0 N − N 1 n = 0 N 1 n = 1 1 n = 1 ⎫ p (0) = N − N 1 = 1 − N 1 ⎪ ⎪ N N ⎪ ⎬ p (0) + p (1) = 1 ⎪ p (1) = N 1 = [ e E/kT + 1] − 1 ⎪ ⎪ ⎭ N 8.044 L9B16

  18. 1 p(n) p(0) 0.5 p(1) 0 1 n 1 2 3 kT/ ε 4 EN E = (0) N p (0) + ( E ) N p (1) = E/kT + 1 e But we knew E , so we could have worked back- wards to find p (1). 8.044 L9B17

  19. ����������������������� ���������������� ������ ٠������������ ��������������������� ����������������������� ��������� ٠� /٠� ������������������� � � � � ��� � � � � � � ��� ���� 8.044 L9B18

  20. The microcanonical ensemble is the starting point for Statistical Mechanics. • We will no longer use it to solve problems. • We will develop our understanding of the 2 ND law. • We will derive the canonical ensemble, the real workhorse of S.M. 8.044 L9B19

  21. MIT OpenCourseWare http://ocw.mit.edu 8.044 Statistical Physics I Spring 2013 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend