in egalit es spectrales pour le contr ole des edp lin
play

In egalit es spectrales pour le contr ole des EDP lin eaires : - PowerPoint PPT Presentation

In egalit es spectrales pour le contr ole des EDP lin eaires : groupe de Schr odinger contre semigroupe de la chaleur. Luc Miller Universit e Paris Ouest Nanterre La D efense, France Pdes, Dispersion, Scattering theory and


  1. In´ egalit´ es spectrales pour le contrˆ ole des EDP lin´ eaires : groupe de Schr¨ odinger contre semigroupe de la chaleur. Luc Miller Universit´ e Paris Ouest Nanterre La D´ efense, France Pde’s, Dispersion, Scattering theory and Control theory , Monastir, June 13, 2013. D’apr` es une collaboration avec Thomas Duyckaerts (Univ. Paris 13) : Resolvent conditions for the control of parabolic equations , Journal of Functional Analysis 263 (2012), pp. 3641-3673. http://hal.archives-ouvertes.fr/hal-00620870 Luc Miller, Paris Ouest, France 1 / 20

  2. Outline Part 1: Background on the interior control of linear PDEs 1 Part 2: Resolvent conditions for parabolic equations 2 Part 3: The harmonic oscillator observed from a half-line 3 Part 4: The Lebeau-Robbiano strategy and logarithmic improvements 4 Luc Miller, Paris Ouest, France 2 / 20

  3. Control of the temperature f in a smooth domain M ⊂ R d (Dirichlet), from a chosen source u acting in an open subset Ω ⊂ M during a time T . M Ω Fast null-controllability The heat O.D.E. in E = L 2 ( M ) with input u ∈ L 2 ( R ; E ): ∂ t f − ∆ f = Ω u . ∀ T > 0 , ∀ f (0) ∈ E , ∃ u , f ( T ) = 0 Part 1: Background on the interior control of linear PDEs Luc Miller, Paris Ouest, France 3 / 20

  4. Control of the temperature f in a smooth domain M ⊂ R d (Dirichlet), from a chosen source u acting in an open subset Ω ⊂ M during a time T . M Ω Fast null-controllability (at cost κ T ) The heat O.D.E. in E = L 2 ( M ) with input u ∈ L 2 ( R ; E ): ∂ t f − ∆ f = Ω u . � T � u ( t ) � 2 dt � κ T � f (0) � 2 . ∀ T > 0 , ∀ f (0) ∈ E , ∃ u , f ( T ) = 0 and 0 � Fast final-observability (at cost κ T ) � T � e T ∆ v � 2 � κ T � Ω e t ∆ v � 2 dt , ( FinalObs ) v ∈ E , T > 0 . 0 Part 1: Background on the interior control of linear PDEs Luc Miller, Paris Ouest, France 3 / 20

  5. Links between heat/Schr¨ odinger/waves controllability ∆ is the Laplacian on a bounded M with Dirichlet boundary conditions. Controllabilty of Restriction on Ω Restriction on T Heat eq. ∂ t f − ∆ f = Ω u No No Schr¨ odinger eq. i ∂ t ψ − ∆ ψ = Ω u Yes No ∂ 2 Wave eq. t w − ∆ w = Ω u Yes Yes Part 1: Background on the interior control of linear PDEs Luc Miller, Paris Ouest, France 4 / 20

  6. Links between heat/Schr¨ odinger/waves controllability ∆ is the Laplacian on a bounded M with Dirichlet boundary conditions. Controllabilty of Restriction on Ω Restriction on T Heat eq. ∂ t f − ∆ f = Ω u No No Schr¨ odinger eq. i ∂ t ψ − ∆ ψ = Ω u Yes No ∂ 2 Wave eq. t w − ∆ w = Ω u Yes Yes 1 ∃ T , wave control ⇒ ∀ T , heat control (by the control transmutation method, cf. Russell, Phung, Miller). 2 ∃ T , wave control ⇒ ∀ T , Schr¨ odinger control (by resolvent conditions, cf. Liu, Miller, Tucsnak-Weiss). √ 3 ∃ T , wave control ⇔ ∃ T , wave group control: i ˙ ψ + − ∆ ψ = Ω u (by resolvent conditions, cf. Miller’12) odinger control ⇒ heat control ? This leads to the new question : Schr¨ Part 1: Background on the interior control of linear PDEs Luc Miller, Paris Ouest, France 4 / 20

  7. Links between heat/Schr¨ odinger/waves controllability ∆ is the Laplacian on a bounded M with Dirichlet boundary conditions. Controllabilty of Restriction on Ω Restriction on T Heat eq. ∂ t f − ∆ f = Ω u No No Schr¨ odinger eq. i ∂ t ψ − ∆ ψ = Ω u Yes No ∂ 2 Wave eq. t w − ∆ w = Ω u Yes Yes 1 ∃ T , wave control ⇒ ∀ T , heat control (by the control transmutation method, cf. Russell, Phung, Miller). 2 ∃ T , wave control ⇒ ∀ T , Schr¨ odinger control (by resolvent conditions, cf. Liu, Miller, Tucsnak-Weiss). √ 3 ∃ T , wave control ⇔ ∃ T , wave group control: i ˙ ψ + − ∆ ψ = Ω u (by resolvent conditions, cf. Miller’12) odinger control ⇒ heat control ? This leads to the new question : Schr¨ odinger ⇒ fractional diffusion ∂ t f + ( − ∆) s f = Ω u , s > 1. No but: Schr¨ Part 1: Background on the interior control of linear PDEs Luc Miller, Paris Ouest, France 4 / 20

  8. Abstract semigroup framework: t �→ e − tA observed by C . Hilbert spaces E (states), F (observations). Semigroup e − tA on E . Bounded (in this talk) operator C ∈ L ( E , F ) (defines what is observed). Its adjoint C ∗ defines how the input u : t �→ F acts in order to control. Example (Heat on the domain M observed on Ω ⊂ M ) A = − ∆ � 0, E = F = L 2 ( M ), D ( A ) = H 2 ( M ) ∩ H 1 0 ( M ), C = Ω. Fast null-controllability of ∂ t f + A ∗ f = C ∗ u , with u ∈ L 2 ( R ; F ) � T � u ( t ) � 2 dt � κ T � f (0) � 2 . ∀ T > 0 , ∀ f (0) ∈ E , ∃ u , f ( T ) = 0 and 0 � Fast final-observability (at cost κ T ) � T � e − TA v � 2 � κ T � Ce − tA v � 2 dt , ( FinalObs ) v ∈ E , T > 0 . 0 Part 1: Background on the interior control of linear PDEs Luc Miller, Paris Ouest, France 5 / 20

  9. Resolvent conditions for control (= Hautus tests) From spectral to dynamic inequalities by (unitary) Fourier transform on E . uss’84 test for exponential stability of t �→ e − tA Recall: Huang-Pr¨ � ( A − λ ) − 1 � � m , Re λ < 0 . Part 2: Resolvent conditions for parabolic equations Luc Miller, Paris Ouest, France 6 / 20

  10. Resolvent conditions for control (= Hautus tests) From spectral to dynamic inequalities by (unitary) Fourier transform on E . uss’84 test for exponential stability of t �→ e − tA Recall: Huang-Pr¨ � ( A − λ ) − 1 � � m , Re λ < 0 . Hautus test for observability of t �→ e itA , A = A ∗ , by C , for some T � v � 2 � m � ( A − λ ) v � 2 + ˜ m � Cv � 2 , v ∈ D ( A ) , λ ∈ R . Zhou-Yamamoto’97 (Huang-Pr¨ uss). Burq-Zworski’04 ( ⇒ ). Miller’05 ( ⇔ ): T > π √ m mT / ( T 2 − m π 2 ) . and κ T = 2 ˜ Recall: Observability of t �→ e itA , A = A ∗ , by C for some T means � T � v � 2 � κ T � Ce itA v � 2 dt , ( ExactObs ) v ∈ E . 0 Part 2: Resolvent conditions for parabolic equations Luc Miller, Paris Ouest, France 6 / 20

  11. Resolvent conditions for control (= Hautus tests) From spectral to dynamic inequalities by (unitary) Fourier transform on E . uss’84 test for exponential stability of t �→ e − tA Recall: Huang-Pr¨ � ( A − λ ) − 1 � � m , Re λ < 0 . Hautus test for observability of t �→ e itA , A = A ∗ , by C , for some T � v � 2 � m � ( A − λ ) v � 2 + ˜ m � Cv � 2 , v ∈ D ( A ) , λ ∈ R . Zhou-Yamamoto’97 (Huang-Pr¨ uss). Burq-Zworski’04 ( ⇒ ). Miller’05 ( ⇔ ): T > π √ m mT / ( T 2 − m π 2 ) . and κ T = 2 ˜ Similar Hautus test for wave ¨ w + Aw = C ∗ f , A > 0, for some T � v � 2 � m λ � ( A − λ ) v � 2 + ˜ m � Cv � 2 , v ∈ D ( A ) , λ ∈ R ∗ . Liu’97 (Huang-Pr¨ uss), Miller’05 ( ⇐ ), R.T.T.Tucsnak’05, Miller’12. Part 2: Resolvent conditions for parabolic equations Luc Miller, Paris Ouest, France 6 / 20

  12. Sufficient resolvent conditions for t �→ e − tA , A > 0 odinger ˙ Recall ( ExactObs ) for Schr¨ ψ − iA ψ = 0 ⇒ ( Res ) with δ = 1 ⇒ ( Res ) with δ = 0 ⇔ ( ExactObs ) for wave ¨ w + Aw = 0. Theorem (Duyckaerts-Miller’11: Main Result) If the resolvent condition with power-law factor : ∃ m > 0 , � 1 � λ � ( A − λ ) v � 2 + � Cv � 2 � v � 2 � m λ δ ( Res ) , v ∈ D ( A ) , λ > 0 , holds for some δ ∈ [0 , 1) , then observability ( FinalObs ) holds for all T > 0 with the control cost estimate κ T � ce c / T β for β = 1+ δ 1 − δ and some c > 0 . Here C is bounded, or admissible to some degree (cf. our paper). Part 2: Resolvent conditions for parabolic equations Luc Miller, Paris Ouest, France 7 / 20

  13. Sufficient resolvent conditions for t �→ e − tA , A > 0 odinger ˙ Recall ( ExactObs ) for Schr¨ ψ − iA ψ = 0 ⇒ ( Res ) with δ = 1 ⇒ ( Res ) with δ = 0 ⇔ ( ExactObs ) for wave ¨ w + Aw = 0. Theorem (Duyckaerts-Miller’11: Main Result) If the resolvent condition with power-law factor : ∃ m > 0 , � 1 � λ � ( A − λ ) v � 2 + � Cv � 2 � v � 2 � m λ δ ( Res ) , v ∈ D ( A ) , λ > 0 , holds for some δ ∈ [0 , 1) , then observability ( FinalObs ) holds for all T > 0 with the control cost estimate κ T � ce c / T β for β = 1+ δ 1 − δ and some c > 0 . Here C is bounded, or admissible to some degree (cf. our paper). Theorem (Duyckaerts-Miller’11: Schr¨ odinger to heat) odinger t �→ e itA holds for some T, If ( ExactObs ) for Schr¨ then ( FinalObs ) for “higher-order” heat t �→ e − tA γ , γ > 1 holds for all T. Part 2: Resolvent conditions for parabolic equations Luc Miller, Paris Ouest, France 7 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend