fonctions de lyapunov pour les edp analyse de la stabilit
play

Fonctions de Lyapunov pour les EDP: analyse de la stabilit e et des - PowerPoint PPT Presentation

Fonctions de Lyapunov pour les EDP: analyse de la stabilit e et des perturbations Christophe Prieur Gipsa-lab, CNRS, Grenoble GT- Contr ole et Probl` emes inverses, F evrier 2011 1/35 Christophe Prieur Gipsa-lab, CNRS, Grenoble GT


  1. Fonctions de Lyapunov pour les EDP: analyse de la stabilit´ e et des perturbations Christophe Prieur Gipsa-lab, CNRS, Grenoble GT- Contrˆ ole et Probl` emes inverses, F´ evrier 2011 1/35 Christophe Prieur Gipsa-lab, CNRS, Grenoble GT EDP, f´ evrier 2011

  2. Introduction Level and flow control in an horizontal reach of an open channel Control = two overflow spillways: $ ! %&' $ " %&' # ! H ( x, t ) ( " %&' ( ! %&' # " Q ( x, t ) ! " ! where H ( x , t ) is the water level and Q ( x , t ) the water flow rate in the reach. 2/35 Christophe Prieur Gipsa-lab, CNRS, Grenoble GT EDP, f´ evrier 2011

  3. Shallow Water Equations Model [Chow, 54] or [Graf, 98]: mass conservation � Q ( x , t ) � ∂ t H ( x , t ) + ∂ x = q ( x ) B momentum conservation � Q 2 ( x , t ) � BH ( x , t ) + gBH 2 ( x , t ) = gBH ( I − J ) + kq Q ∂ t Q ( x , t ) + ∂ x 2 BH where g and B are constant values q the water supply/removal function I is the bottom slope n 2 M Q 2 J ( Q , H ) = S ( H ) 2 R ( H ) 4 / 3 is the slope’s friction 3/35 Christophe Prieur Gipsa-lab, CNRS, Grenoble GT EDP, f´ evrier 2011

  4. Motivations Problem Compute the positions u 0 and u L of the spillways s.t. the control actions depend only on the (measured) H (0 , t ) and H ( L , t ) ∃ a solution of our model (PDE) state → t → + ∞ equilibrium stability properties even in presence of perturbations I , J and q 4/35 Christophe Prieur Gipsa-lab, CNRS, Grenoble GT EDP, f´ evrier 2011

  5. Outline 1.1 Stability analysis of hyperbolic non-homogeneous systems 1.2 Related works 1.3 Applications 2 Sensitivity with respect to large perturbations Notion of ISS Lyapunov functions for PDE Asymp. Stability �⇒ Input-to State Stability 2.1 An ISS Lyapunov function for hyperbolic linear systems 2.2 An ISS Lyapunov function for semilinear parabolic systems Conclusion 5/35 Christophe Prieur Gipsa-lab, CNRS, Grenoble GT EDP, f´ evrier 2011

  6. Outline 1.1 Stability analysis of hyperbolic non-homogeneous systems 1.2 Related works 1.3 Applications 2 Sensitivity with respect to large perturbations Notion of ISS Lyapunov functions for PDE Asymp. Stability �⇒ Input-to State Stability 2.1 An ISS Lyapunov function for hyperbolic linear systems 2.2 An ISS Lyapunov function for semilinear parabolic systems Conclusion 5/35 Christophe Prieur Gipsa-lab, CNRS, Grenoble GT EDP, f´ evrier 2011

  7. Outline 1.1 Stability analysis of hyperbolic non-homogeneous systems 1.2 Related works 1.3 Applications 2 Sensitivity with respect to large perturbations Notion of ISS Lyapunov functions for PDE Asymp. Stability �⇒ Input-to State Stability 2.1 An ISS Lyapunov function for hyperbolic linear systems 2.2 An ISS Lyapunov function for semilinear parabolic systems Conclusion 5/35 Christophe Prieur Gipsa-lab, CNRS, Grenoble GT EDP, f´ evrier 2011

  8. Outline 1.1 Stability analysis of hyperbolic non-homogeneous systems 1.2 Related works 1.3 Applications 2 Sensitivity with respect to large perturbations Notion of ISS Lyapunov functions for PDE Asymp. Stability �⇒ Input-to State Stability 2.1 An ISS Lyapunov function for hyperbolic linear systems 2.2 An ISS Lyapunov function for semilinear parabolic systems Conclusion 5/35 Christophe Prieur Gipsa-lab, CNRS, Grenoble GT EDP, f´ evrier 2011

  9. Outline 1.1 Stability analysis of hyperbolic non-homogeneous systems 1.2 Related works 1.3 Applications 2 Sensitivity with respect to large perturbations Notion of ISS Lyapunov functions for PDE Asymp. Stability �⇒ Input-to State Stability 2.1 An ISS Lyapunov function for hyperbolic linear systems 2.2 An ISS Lyapunov function for semilinear parabolic systems Conclusion 5/35 Christophe Prieur Gipsa-lab, CNRS, Grenoble GT EDP, f´ evrier 2011

  10. Many works in the literature For a survey, see [Malaterre, Rogers, and Schuurmans, 98]. Finite dimensional approach: H ∞ control design is developed in [Litrico, and Georges, 99]. Infinite dimensional approach: Delay-based control [G. Besan¸ con, D. Georges, 09] Lyapunov methods [Dos Santos, Bastin, Coron, and d’Andr´ ea-Novel, 07], [V.T. Pham, G. Besan¸ con, D. Georges, 10] And also new dissipativity condition for quasi-linear hyperbolic systems [Coron, Bastin, and d’Andr´ ea-Novel, 08]. See below. LQ methods [Winkin, Dochain] Backstepping transformations [Smyshlyaev, Cerpa, Krstic, 10] among others 6/35 Christophe Prieur Gipsa-lab, CNRS, Grenoble GT EDP, f´ evrier 2011

  11. Many works in the literature For a survey, see [Malaterre, Rogers, and Schuurmans, 98]. Finite dimensional approach: H ∞ control design is developed in [Litrico, and Georges, 99]. Infinite dimensional approach: Delay-based control [G. Besan¸ con, D. Georges, 09] Lyapunov methods [Dos Santos, Bastin, Coron, and d’Andr´ ea-Novel, 07], [V.T. Pham, G. Besan¸ con, D. Georges, 10] And also new dissipativity condition for quasi-linear hyperbolic systems [Coron, Bastin, and d’Andr´ ea-Novel, 08]. See below. LQ methods [Winkin, Dochain] Backstepping transformations [Smyshlyaev, Cerpa, Krstic, 10] among others 6/35 Christophe Prieur Gipsa-lab, CNRS, Grenoble GT EDP, f´ evrier 2011

  12. Contribution Here: Perturbations are taken into account asymp. stability when perturbations are vanishing bounded state with bounded perturbations Methods that are used Riemann invariants [Li Ta-tsien, 94] Lyapunov method 7/35 Christophe Prieur Gipsa-lab, CNRS, Grenoble GT EDP, f´ evrier 2011

  13. Contribution Here: Perturbations are taken into account asymp. stability when perturbations are vanishing bounded state with bounded perturbations Methods that are used Riemann invariants [Li Ta-tsien, 94] Lyapunov method 7/35 Christophe Prieur Gipsa-lab, CNRS, Grenoble GT EDP, f´ evrier 2011

  14. Contribution Here: Perturbations are taken into account asymp. stability when perturbations are vanishing bounded state with bounded perturbations Methods that are used Riemann invariants [Li Ta-tsien, 94] Lyapunov method 7/35 Christophe Prieur Gipsa-lab, CNRS, Grenoble GT EDP, f´ evrier 2011

  15. Related issue: Leak localization Instead of a control problem, we may also consider an observation problem. Leak detection for quasi-linear system Instead of controlling the state, we may regulate the error using a similar approach, let us cite In Australia: E. Weyer, I. Mareels In France: X. Litrico, N. Bedjaoui, G. Besan¸ con 8/35 Christophe Prieur Gipsa-lab, CNRS, Grenoble GT EDP, f´ evrier 2011

  16. Related issue: Leak localization Instead of a control problem, we may also consider an observation problem. Leak detection for quasi-linear system Instead of controlling the state, we may regulate the error using a similar approach, let us cite In Australia: E. Weyer, I. Mareels In France: X. Litrico, N. Bedjaoui, G. Besan¸ con 8/35 Christophe Prieur Gipsa-lab, CNRS, Grenoble GT EDP, f´ evrier 2011

  17. General context: non-homogeneous systems in R 2 When fixing an equilibrium and using the Riemann invariant coordinates (as in [Li, 94]), we may rewrite the previous eq. as a non-homogeneous quasi-linear hyperbolic system : Let us consider ξ : [0 , L ] × [0 , + ∞ ) → R 2 such that ∂ t ξ + Λ( ξ ) ∂ x ξ = h ( ξ ) (1) where Λ: ε 0 B → R 2 × 2 is a C 1 function satisfying Λ = diag( λ 1 , λ 2 ) , and λ 1 (0) < 0 < λ 2 (0) , and h : ε 0 B → R 2 is C 1 s.t. h (0) = 0 . The boundary conditions are � ξ 1 ( L , t ) � � ξ 1 (0 , t ) � = g (2) , ξ 2 (0 , t ) ξ 2 ( L , t ) where g : ε 0 B → R 2 is C 1 s.t. g (0) = 0. In [de Halleux, CP, Coron, d’Andr´ ea-Novel, Bastin, 03] and [Li, 94]: h ≡ 0 9/35 Christophe Prieur Gipsa-lab, CNRS, Grenoble GT EDP, f´ evrier 2011

  18. General context: non-homogeneous systems in R 2 When fixing an equilibrium and using the Riemann invariant coordinates (as in [Li, 94]), we may rewrite the previous eq. as a non-homogeneous quasi-linear hyperbolic system : Let us consider ξ : [0 , L ] × [0 , + ∞ ) → R 2 such that ∂ t ξ + Λ( ξ ) ∂ x ξ = h ( ξ ) (1) where Λ: ε 0 B → R 2 × 2 is a C 1 function satisfying Λ = diag( λ 1 , λ 2 ) , and λ 1 (0) < 0 < λ 2 (0) , and h : ε 0 B → R 2 is C 1 s.t. h (0) = 0 . The boundary conditions are � ξ 1 ( L , t ) � � ξ 1 (0 , t ) � = g (2) , ξ 2 (0 , t ) ξ 2 ( L , t ) where g : ε 0 B → R 2 is C 1 s.t. g (0) = 0. In [de Halleux, CP, Coron, d’Andr´ ea-Novel, Bastin, 03] and [Li, 94]: h ≡ 0 9/35 Christophe Prieur Gipsa-lab, CNRS, Grenoble GT EDP, f´ evrier 2011

  19. General context: non-homogeneous systems in R 2 When fixing an equilibrium and using the Riemann invariant coordinates (as in [Li, 94]), we may rewrite the previous eq. as a non-homogeneous quasi-linear hyperbolic system : Let us consider ξ : [0 , L ] × [0 , + ∞ ) → R 2 such that ∂ t ξ + Λ( ξ ) ∂ x ξ = h ( ξ ) (1) where Λ: ε 0 B → R 2 × 2 is a C 1 function satisfying Λ = diag( λ 1 , λ 2 ) , and λ 1 (0) < 0 < λ 2 (0) , and h : ε 0 B → R 2 is C 1 s.t. h (0) = 0 . The boundary conditions are � ξ 1 ( L , t ) � � ξ 1 (0 , t ) � = g (2) , ξ 2 (0 , t ) ξ 2 ( L , t ) where g : ε 0 B → R 2 is C 1 s.t. g (0) = 0. In [de Halleux, CP, Coron, d’Andr´ ea-Novel, Bastin, 03] and [Li, 94]: h ≡ 0 9/35 Christophe Prieur Gipsa-lab, CNRS, Grenoble GT EDP, f´ evrier 2011

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend