unusual lisa
play

unusual LISA Jean-Yves Vinet A.R.T.E.M.I.S. Observatoire de la Cte - PowerPoint PPT Presentation

unusual LISA Jean-Yves Vinet A.R.T.E.M.I.S. Observatoire de la Cte dAzur NICE (France) Contents 1) Gravitational coronography 2) Signals from asteroids GGI/FLORENCE 28-30 J-Y. Vinet 2 Sept 2006 Gravitational coronography Tinto


  1. unusual LISA Jean-Yves Vinet A.R.T.E.M.I.S. Observatoire de la Côte d’Azur NICE (France)

  2. Contents 1) Gravitational coronography 2) Signals from asteroids GGI/FLORENCE 28-30 J-Y. Vinet 2 Sept 2006

  3. Gravitational coronography Tinto & Larson CQG 22/10 S531 (2005) Nayak, Dhurandhar, Pai & Vinet PRD 68 122001 (2003) Resolved Source of GW θ ϕ Data combination giving a zero response For direction ( , ) θ ϕ GGI/FLORENCE 28-30 J-Y. Vinet 3 Sept 2006

  4. Benefits (conjecture) • Occultation of a strong source for better analysis of its angular neighborhood • Improving angular resolution GGI/FLORENCE 28-30 J-Y. Vinet 4 Sept 2006

  5. LISA 2’ 2 U V 2 2 δν ฀ , U V ν r L r L 1 n 3 n 3 1 U V 3 1 r 3’ 1 n 2 3 1’ L V U 2 3 1 GGI/FLORENCE 28-30 J-Y. Vinet 5 Sept 2006

  6. Recall • 6 main data channels (1 per phasemeter) • There exist families of combinations of the 6 flows with properly chosen time delays that cancel dominant instrumental noises � TDI (Time Delay Interferometry) (Tinto, Armstrong, Estabrook, 99) • They form a module and have generating parts (sets of generators). (Dhurandhar,Nayak,Vinet, 02) • One may combine these generators for special purposes, keeping the noise cancelling property GGI/FLORENCE 28-30 J-Y. Vinet 6 Sept 2006

  7. Recall • The generators have the form: = ( , , , , , ) g p p p q q q 1 2 3 1 2 3 • Where are formal polynomials ( , ) p q i i in the 3 delay operators D a ≡ − = ( )( ) ( ) ( 1,2,3) D f t f t L a a a GGI/FLORENCE 28-30 J-Y. Vinet 7 Sept 2006

  8. Recall 6-uple of data: = U( ) [ ( ), ( ), ( ), ( ), ( ), ( )] t V t V t V t U t U t U t 1 2 3 1 2 3 Generic noise-cancelling combination g : 3 ∑ = + | U ( ) [ ( ) ( )] g t p V t q U t i i i i = 1 i = 0 when U,V represent laser phase fluctuations GGI/FLORENCE 28-30 J-Y. Vinet 8 Sept 2006

  9. Notation r w θ ϕ Source oriented unit vector : ( , ) r r r ∂ ∂ r r 1 w w θ = ϕ = 3 orthonormal vectors : , , w ∂ θ θ ∂ ϕ sin r a = Unit vector along arm #a : ( 1,2,3) n a Directional functions (spin 2 harmonics): r r r r ξ + = θ ⋅ − ϕ ⋅ 2 2 ( ) ( ) n n a a a r r r r ξ × = θ ⋅ ϕ ⋅ 2( )( ) n n a a a r r r µ = ⋅ Location of node #a : r notation w r a a a GGI/FLORENCE 28-30 J-Y. Vinet 9 Sept 2006

  10. Notation , : the 2 polarization components of the GW h h + × Data flow at node # 1 : − µ − − µ − ( ) ( ) h t h t L + × + × = − ξ , 1 , 3 2 ( ) U t r r + × + × + ⋅ 1 , 2 , 2(1 ) w n 2 − µ − − µ − ( ) ( ) h t h t L + × + × = ξ , 1 , 2 3 ( ) V t r r + × + × − ⋅ 1 , 3 , 2(1 ) w n 3 Others are obtained by circular permutation of indices GGI/FLORENCE 28-30 J-Y. Vinet 10 Sept 2006

  11. Notation Fourier space : transfer functions: % % % % = + = + , U F h F h V F h F h + + × × + + × × a U U a V V a a a a ω µ + ω µ + ωµ ωµ − − ( ) ( ) i i L i i L e e e e 2 3 3 2 1 1 = ξ = − ξ , F F r r r r + × + × − ⋅ + ⋅ 3 , 2 , V U + × + × 2(1 ) 2(1 ) 1 , w n 1 , w n 3 2 + circular permutations 6-uple transfer: = F ( , , , , , ) F F F F F F × + × + × + × + × + × + × +, , , , , , , V V V U U U 1 2 3 1 2 3 GGI/FLORENCE 28-30 J-Y. Vinet 11 Sept 2006

  12. Notation • Example of generators (Tinto et al.) α = (1, , ,1, , ) D D D D D D 3 1 3 1 2 2 β = ( ,1, , ,1, ) D D D D D D 1 2 1 3 2 3 γ = ( , ,1, , ,1) D D D D D D 2 2 3 1 3 1 ς and α ⎡ ⎤ r ⎢ ⎥ = ⎢ ⎥ β • Vector generator: Y ⎢ ⎥ γ ⎣ ⎦ GGI/FLORENCE 28-30 J-Y. Vinet 12 Sept 2006

  13. Algebraic solution Generic combination C : r r = α + β + γ = ⋅ C Y C C C C 1 2 3 Transfer function: % % % = + = ( ) | F ( ) | F ( ) h f C h f C h f + × × + C r r r r % % ⋅ + ⋅ C Y|F ( ) C Y|F ( ) h f h f + × × + GGI/FLORENCE 28-30 J-Y. Vinet 13 Sept 2006

  14. Algebraic formal solution For cancelling any signal, we must have simultaneously: r r r r ⋅ = ⋅ = C Y|F 0, C Y|F 0 × + Thus: r r r = × C Y|F Y|F × + GGI/FLORENCE 28-30 J-Y. Vinet 14 Sept 2006

  15. Explicit solution = α 1) The transfer functions | F F α + × + × , , May be considered as scalar products with ξ The directional functions : r ξ = ξ ξ ξ ( , , ) + × + × + × + × , , 1 2 , 3 , r r r r r r r ∃ α β γ = α β γ ⋅ ξ then , , : ( , , ) F α β γ + × + × , , , , r r r r ⎡ ⎤ β × γ ⋅ ξ × ξ ( ) ( ) + × ⎢ ⎥ r r r And r r = γ × α ⋅ ξ × ξ ⎢ ⎥ C ( ) ( ) + × r r r ⎢ ⎥ r α × β ⋅ ξ × ξ ( ) ( ) ⎢ ⎥ GGI/FLORENCE 28-30 J-Y. Vinet ⎣ ⎦ + × 15 Sept 2006

  16. Explicit solution Recall: ωµ ω µ + ωµ ω µ + − − ( ) ( ) i i L i i L e e e e 1 2 3 1 3 2 = ξ = − ξ , F F r r r r + × + × − ⋅ + ⋅ 3 , 2 , V U + × + × 2(1 ) 2(1 ) 1 , w n 1 , w n 3 2 ωµ ω = = Notation : i i L , g e e e a a a a r r r r = − ⋅ = + ⋅ 1 , 1 v n w u n w a a a a − − g g e g g e = = 1 2 3 1 3 2 , G H 3 2 v u 3 2 GGI/FLORENCE 28-30 J-Y. Vinet 16 Sept 2006

  17. Explicit Solution then : − − − ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ e G e H G e e H e e G H 3 1 2 1 1 2 3 1 2 3 1 1 r ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ r r 1 1 1 α = − β = − γ = − , , e e G H e G e H G e e H ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 1 3 2 2 1 2 3 2 2 1 3 2 2 2 2 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − − − ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ G e e H e e G H e G e H 3 1 2 3 1 2 3 3 2 3 1 3 Invariance under simultaneous circular permutation of: - Vectors - Components - Indices GGI/FLORENCE 28-30 J-Y. Vinet 17 Sept 2006

  18. Explicit Solution r The direction of the source is constant w B In the barycentric frame There exists a linear mapping to the LISA frame : r r = ⋅ ( ) R( ) w t t w o o B Orbital time parameter, very slowly varying with respect to The « signal time » GGI/FLORENCE 28-30 J-Y. Vinet 18 Sept 2006

  19. Explicit Solution r All functions may be expressed in terms of w ⎧ ⎪ = µ = m ( , ) 1 , / 3 u v w Lw 1 2 1 1 ⎪ ⎪ 1 = ± − µ = − + ⎨ ( , ) 1 ( 3 ), ( 3 ) / 2 3 u v w w L w w 2 2 1 2 1 2 2 ⎪ ⎪ 1 = ± + µ = − − ( , ) 1 ( 3 ), ( 3 ) / 2 3 u v w w L w w ⎪ ⎩ 3 2 1 3 1 2 2 ⎡ ⎤ + − + 2 2 2 1 2 2 w w w 3 1 2 ⎢ ⎥ r r r 3 η ≡ ξ × ξ = + + − − 2 2 2 ⎢ ⎥ 1 2 3 w w w w w w + × 3 3 1 2 1 2 4 ⎢ ⎥ + + − + 2 2 2 ⎢ 1 2 3 ⎥ w w w w w ⎣ ⎦ 3 1 2 1 2 GGI/FLORENCE 28-30 J-Y. Vinet 19 Sept 2006

  20. Explicit Solution η = − ⎡ − − + − − − + ⎤ 2 2 2 1 (1 ) ( ) ( ) C e u v g e g e g e e g u v e e g e g e g e e g ⎣ ⎦ 1 1 2 3 1 3 2 2 3 2 3 1 3 2 2 3 1 2 2 3 3 2 3 1 4 u v u v 2 2 3 3 η { ⎡ + − − − + 2 2 (1 ) ( ) e e e v v g e g e g e e g ⎣ 1 2 3 1 3 1 3 2 1 2 1 3 3 4 u v u v 1 1 3 3 ⎤ − − − + 2 ( ) u u e g e g e g e e g ⎦ 1 3 2 3 1 2 3 2 1 3 1 ⎡ + − − − + 2 ( ) ( ) e e e u v g e g e g e e g ⎣ 1 2 3 1 3 2 3 3 1 1 1 3 2 } ⎤ − − − + 2 ( ) u v e g e g e g e e g ⎦ 3 1 2 2 1 3 3 1 1 3 2 η { + − ⎡ − − + 2 3 (1 ) ( ) e e e u u g e g e g e e g ⎣ 1 2 3 1 2 1 3 3 1 3 1 2 2 4 u v u v 1 1 2 2 ⎤ − − − + 2 ( ) v v e g e g e g e e g ⎦ 1 2 3 2 1 3 2 3 1 2 1 ⎡ + − − − + 2 ( ) ( ) e e e v u g e g e g e e g ⎣ 1 2 3 1 2 3 2 2 1 1 1 2 3 } ⎤ − − − + 2 ( ) 33 different delays u v e g e g e g e e g ⎦ 1 2 2 3 2 1 1 2 1 2 3 GGI/FLORENCE 28-30 J-Y. Vinet 20 Sept 2006

  21. Explicit Solution For retrieving the time domain, simply replace the Phase factors ω ωµ = = i L i , e e g e a a a a By delay operators = − Γ = − µ ( )( ) ( ), ( )( ) ( ) D f t f t L f t f t a a a a µ the delays et are slowly varying L a a Due to the orbital deformation of the triangle (flexing) L a µ Due to the apparent motion of the source viewed from LISA a GGI/FLORENCE 28-30 J-Y. Vinet 21 Sept 2006

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend