unusual compositional dependence of the unusual
play

Unusual compositional dependence of the Unusual compositional - PowerPoint PPT Presentation

Unusual compositional dependence of the Unusual compositional dependence of the exciton reduced mass exciton reduced mass it it d d d d in GaAs 1 x Bi x ( x =0 10%) in GaAs 1 x Bi x ( x =0 10%) x ( x ( ) ) 1 x 1 x G Pettinari


  1. Unusual compositional dependence of the Unusual compositional dependence of the exciton reduced mass exciton reduced mass it it d d d d in GaAs 1 x Bi x ( x =0 ‐ 10%) in GaAs 1 x Bi x ( x =0 ‐ 10%) x ( x ( ) ) 1 ‐ x 1 ‐ x G Pettinari 1 A Polimeni 2 J H Blokland 1 R Trotta 2 G. Pettinari 1 , A. Polimeni 2 , J. H. Blokland 1 , R. Trotta 2 , P. C. M. Christianen 1 , M. Capizzi 2 , J. C. Maan 1 , X Lu 3 E C Young 3 and T Tiedje 3 X. Lu , E. C. Young and T. Tiedje 1 High Field Magnet Laboratory, Radboud University Nijmegen, The Netherlands Radboud University Nijmegen, The Netherlands 2 Dipartimento di Fisica, Sapienza Università di Roma, Italy 3 Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada Ann Arbor, July 16 th

  2. Outline Bismuth in GaAs: ‐ electronic properties ‐ magneto ‐ photoluminescence (0 ‐ 30 T) and exciton reduced mass determination exciton reduced mass determination ‐ evidence for a largely perturbed band structure ‐ evidence for a largely perturbed band structure

  3. Ga(As,Bi) expected trends atomic electronegativity electronegativity number first ionization CBs potential V 6 p Bi Bi is expected to III B V B 4 p As p s electron influence the configuration 3.04 4 s Ga 14.5 valence band B N 2 s N VBs 1s 2 2s 2 p 3 Al P 2.18 1.81 .8 9.81 6.00 Ga As Large relativistic corrections are [Ar]3d 10 4s 2 p 1 [Ar]3d 10 4s 2 p 3 expected due to Z → expected due to Z Bi → In Sb large SO splitting ∆ 0 of VB anion p ‐ states 2.02 7.29 ∆ (G Bi) 2 15 V ∆ 0 (GaBi)=2.15 eV Tl Tl Bi Bi [Xe]4f 14 5d 10 6s 2 p 3 P. Carrier and S. ‐ H. Wei, Phys. Rev. B 70 , 035212 (2004)

  4. Ga(As,Bi) expected trends A. Janotti, S. ‐ H. Wei, and S. B. Zhang, Phys. Rev. B 65 , 115203 (2002) Predicted E g = ‐ 1.45 eV for GaBi Predicted E = ‐ 1 45 eV for GaBi density functional formalism and LDA (64 ‐ atom cell calculation) Expected band gap reduction following GaBi (heavier anion) (smaller gap) rule (heavier anion) ‐ (smaller gap) rule Γ L X Y. Zhang, A. Mascarenhas, and L. –W. Wang, Phys. Rev. B 71 , 155201 (2005) E Bi E Bi VBM VBM • Localization of valence band states at Bi L li ti f l b d t t t Bi atoms • Bi generates an impurity state ( E Bi ) 80 meV below the VBM • Pressure coefficient of E Bi similar to GaAs, no Bi state emerging from the VB density functional formalism and LDA

  5. Ga(As,Bi) observed trends = + − − − E x E ( 1 x ) E b x ( 1 x ) GaAs 1- x Bi x GaAs 1 Bi GaBi GaAs − 1.40 x x T =290 K = α + β = − α = β = b ( x ) ( 1 x ) E 0 . 36 eV 9 . 5 eV 10 . 4 GaBi Kunishige Oe and Hiroshi Okamoto, Jpn. J. Appl. Phys. 37 , L1283 (1998) (eV) 1.20 X. Lu et al. , Appl. Phys. Lett. 95 , 41903 (2009) X. Lu et al. , Appl. Phys. Lett. 95 , 41903 (2009) Energy x =(0 ‐ 5)% ∆ E g ≈‐ 80 meV/%Bi 1.00 (GaAs 1 ‐ x N x ; ∆ E g ≈ -100 meV/%N; b ~16-20 eV ) experiment (PL) experiment (PL) 0.800 0 2 4 6 8 10 12 x (%) 1.44 In z Ga 1- z As A larger band gap reduction is observed 1.28 y (eV) for the same increase in lattice constant GaAs GaAs 1- y N y N z =24% nd gap Energ 1.12 GaAs 1- w Sb w y =5% w =22% Potential for 0 96 0.96 GaAs GaAs 1- x Bi x Bi 1.31 µ m 1 31 µ m Ban • Heterojunction bipolar transistors GaAs • Solar cells x =10% 0.8 1.55 µ m • Telecom 5 6 5.6 5 65 5.65 5 7 5.7 5 75 5.75 a (Å)

  6. Ga(As,Bi) observed trends B. Fluegel et al. , Phys. Rev. Lett. 97 , 067205 (2006) ∆ = ∆ + − ∆ − − GaBi GaAs ( GaAs Bi ) x ( 1 x ) b x ( 1 x ) − 0 1 x x 0 0 ∆ ∆ = ∆ ∆ = GaBi GaAs 2 2 . 15 15 eV eV 0 0 . 34 34 eV eV 0 0 0 0 b = ‐ 6.0 eV (GaAs 1 ‐ x N x ; ∆ 0 constant) Potential for spintronics Bi ‐ related states form with pressure coefficient similar to GaAs Ultrafast photoresponse in the NIR for emitters and detectors of pulsed THz radiation K. Bertulis et al. , Appl. Phys. Lett. 88 , 201112 (2006) S. Francoeur et al. , Phys. Rev. B 77 , 085209 (2008)

  7. Ga(As,Bi): what about the carrier mass? J. Wu et al. , J. Appl. Phys. 105 , 011101 (2009) R. N. Kini et al. , J. Appl. Phys., 106 , 043705 (2009) Bi incorporation affects the electron mobility We address the carrier effective mass in Ga(As,Bi) b by magneto ‐ photoluminescence t h t l i

  8. The samples Grown on (100) GaAs by molecular beam epitaxy Grown on (100) GaAs by molecular beam epitaxy FE GaAs 1- x Bi x x = 10.6% x =0, 0.6, 1.3, 1.7, 1.9, 3.0, 3.8, T = 200 K 4 5 5 6 8 5 and 10 6% 4.5, 5.6, 8.5 and 10.6% x = 8.5% 8 % T G =(270 – 380) °C, thickness t =(40 ‐ 350) nm x = 5.6% b. units) x = 4.5% X. Lu et al. , Appl. Phys. Lett. 92 , 192110 (2008) x = 3 8% x = 3.8% ensity (arb x = 3% PL Inte x = 1.9% x = 1.7% x = 1.3% LE x = 0.6% Good structural properties d l 0.8 1.0 1.2 1.4 Energy (eV)

  9. The samples Grown on (100) GaAs by molecular beam epitaxy Grown on (100) GaAs by molecular beam epitaxy FE GaAs 1- x Bi x x = 10.6% x =0, 0.6, 1.3, 1.7, 1.9, 3.0, 3.8, T = 200 K 4.5, 5.6, 8.5 and 10.6% 4 5 5 6 8 5 and 10 6% x = 8.5% 8 % T G =(270 – 380) °C, thickness t =(40 ‐ 350) nm x = 5.6% b. units) x = 4.5% x = 3 8% x = 3.8% 110 110 ensity (arb T =200 K M (meV) x = 3% 90 FWHM PL Inte x = 1.9% 70 x = 1.7% 50 0 2 4 6 8 10 x = 1.3% x (%) LE x = 0.6% Unusual compositional linewidth dependence Unusual compositional linewidth dependence 0.8 1.0 1.2 1.4 Energy (eV)

  10. High ‐ magnetic field measurements Nijmegen The Netherlands B = 0 – 33 T ‐ Powered by 2×10 MW at 500 V (4 ⋅ 10 4 A) ‐ Chilled by 10 4 l/min deionised water at 30 atm at 10 ° C. 1 hour magnet time costs 1,000 €

  11. Why 200 K? GaAs 1- x Bi x GaAs 1- x Bi x FE FE T =210 K x =1.9% x 1.9% x 8.5% x =8.5% T = 200 K nits) nits) P =12 P 0 P =20 P P =20 P 0 0 nsity (arb. un nsity (arb. un P = 4 P 0 P = 10 P 0 P =P 0 P = 2 P 0 LE P = P PL Inten LE PL Inten 0 T = 10 K T =10 K P =20 P 0 0 P 12 P P =12 P 0 P = 10 P 0 P = 4 P 0 P = 2 P 0 P = P 0 P = P 0 1.15 1.2 1.25 1.3 1.35 1.4 0.8 0.85 0.9 0.95 1 1.05 Energy (eV) Energy (eV) Localized excitons dominate low ‐ T photoluminescence p G. Pettinari et al. , Appl. Phys. Lett. 92 , 262105 (2008)

  12. Why 200 K? GaAs 1- x Bi x - x = 0.6% GaAs 1- x Bi x - x = 1.9% GaAs 1- x Bi x - x = 5% (3.6%) 4.5% (a) (b) (c) units) P 0 = 8 W/cm 2 P 0 = 8 W/cm 2 P 0 = 8 W/cm 2 ensity (arb. 16× P 0 16× P 0 16× P 0 T = 180 K T = 180 K T = 180 K 3× P 0 3× P 0 3× P 0 FE FE FE LE P 0 P 0 P 0 ized PL Inte FE GaAs 16× P 0 16× P 0 16× P 0 Normali T = 150 K T = 150 K T = 150 K 3× P 0 3× P 0 3× P 0 P 0 P 0 FE P 0 LE LE FE LE FE 0.25× P 0 0.05× P 0 0.25× P 0 0 0 0 1.2 1.3 1.4 1.5 1.0 1.1 1.2 1.3 1.4 1.0 1.1 1.2 1.3 Energy (eV) Energy (eV) Energy (eV) Accurate choice of measurement power and temperature p p

  13. Why 200 K? R K d R. Kudrawiec et al. , J. Appl. Phys. 106 , 023518 (2009) i l J A l Ph 106 023518 (2009) S I h f S. Imhof et al. , Appl. Phys. Lett. 96 , 131115 (2010) l A l Ph L 96 131115 (2010) x =4.5% x =3%

  14. Magneto ‐ PL: data 2 2 P =10 W/cm P =70 W/cm GaAs 1- x Bi x GaAs 1- x Bi x At high power carrier T =190 K T =190 K x =8.5% x =8.5% scattering disrupts g p 30 T 30 T 30 T 30 T the coherence of the electron/hole b. un.) cyclotron orbit cyclotron orbit ntensity (arb PL In 0 T 0 T 0.80 0.85 0.90 0.95 1.00 1.05 0.80 0.85 0.90 0.95 1.00 1.05 Energy (eV) Energy (eV) Energ (eV) Energy (eV) G Pettinari et al Phys Rev B 81 235211 (2010) G. Pettinari et al ., Phys. Rev. B 81 , 235211 (2010)

  15. Magneto ‐ PL: data 0.95 2 P 0 = ~10 W/cm At high power carrier 3×P 0 scattering disrupts g p 0 Energy (eV) 7×P 0 the coherence of the 0.94 15×P 0 electron/hole cyclotron orbit cyclotron orbit PL Peak E 0.93 T = 190 K T 190 K GaAs 1- x Bi x - x = 8.5% 0.92 0 6 12 18 24 30 B (T) B (T) G Pettinari et al Phys Rev B 81 235211 (2010) G. Pettinari et al ., Phys. Rev. B 81 , 235211 (2010)

  16. Magneto ‐ PL: data GaAs:Si ( e ,A) At high power carrier T =5 K Si =10 18 cm -3 bb n scattering disrupts g p 30T the coherence of the 28T 26T electron/hole units) 24T cyclotron orbit cyclotron orbit 22T 22T tensity (arb. u 20T as found in 18T degenerate GaAs 16T 14T and InN and InN PL Int 12T 10T 1.54 08T µ = 0.049 m 0 06T 04T 1.53 ergy (eV) LL 0 02T 00T ( e ,A) 1.42 1.46 1.5 1.54 1.58 1.52 Energy (eV) Energy (eV) Ene 1.51 m e = 0.069 m 0 G Pettinari et al Phys Rev B 79 165207 (2009) G. Pettinari et al ., Phys. Rev. B 79 , 165207 (2009) 0 10 20 30 B (T)

  17. Magneto ‐ PL: data 17 cm -3 InN n=4 × 10 At high power carrier T = 5K 30T scattering disrupts g p the coherence of the electron/hole cyclotron orbit cyclotron orbit as found in degenerate GaAs and InN and InN 10T 682 08T 06T ergy (meV) µ = 0.093 m 0 04T 678 02T 00T Ene 674 600 620 640 660 680 700 720 Energy(meV) 670 0 8 16 24 32 G. Pettinari et al ., Phys. Rev. B 79 , 165207 (2009) B (T)

  18. Magneto ‐ PL: data . . . back to GaAsBi GaAs 1- x Bi x - x = 0.6% T = 200 K GaAs 1 Bi 15 15 1- x x x = 0.6% free T = 200 K units) exciton B = 30 T 10 10 sity (arb. u 27 T E d (meV) 24 T 21 T 18 T 5 5 ∆ E 15 T PL Inten 12 T localized 09 T exciton 06 T 0 FE FE LE 03 T 00 T 0 6 12 18 24 30 FE GaAs B (T) 1.2 1.3 1.4 1.5 E Energy (eV) ( V) Localized excitons behave differently

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend