understanding compound quality
play

Understanding Compound Quality Focus on Molecular Property Design - PowerPoint PPT Presentation

Understanding Compound Quality Focus on Molecular Property Design Paul D Leeson Paul Leeson Consulting Ltd paul.leeson@virgin.net A high level view Oral small molecules Guiding Optimal Compound Design and Development, Boston, 19 th March 2015


  1. Understanding Compound Quality Focus on Molecular Property Design Paul D Leeson Paul Leeson Consulting Ltd paul.leeson@virgin.net A high level view Oral small molecules Guiding Optimal Compound Design and Development, Boston, 19 th March 2015

  2. Success rates: Preclinical-Phase III 4.3% ; Phase II 23% Evidence for progression of unoptimised compounds • Pfizer: ‘4 Pillars’ for phase II success (44 phase II projects, 2005-9) – Exposure at target; Binding to target; Pharmacological response; Target linked clinically to disease modification – Low confidence in exposure in 18/34 non-progressing molecules: “cannot conclude mechanism tested adequately in 43% of cases” • AstraZeneca: ‘5Rs’ (>114 preclinical to phase II projects, 2005-10) – ‘Right’: Target & Tissue (4Ps); Safety; Patient; Commercial potential – 29% Clinical efficacy failures “dose limited by compound characteristics or tissue exposure not established” – Decision making process: eg, 38% projects advanced to clinic had low confidence in safety & 78% of these eventually failed due to toxicity • GSK: solubility-limited candidates – BCS II/DCS class IIb – Add 2 years to development: “lack of efficacy owing to lack of exposure” • FDA submissions (302 NMEs, 2000-12; 151 (50%) unsuccessful 1 st time) – 29% Unsuccessful 1 st submissions had dose or clinical end point issues Success rates : Thomson Reuters, 2006-10; 4 Pillars: Morgan et al, Drug Discovery Today 2012, 17 , 419; Bunnage, et al Nat. Chem. Biol . 2013, 9 , 195; 5Rs: Cook et al, Nat. Revs. Drug Disc. 2014, 13 , 419; Solubility: Hann & Keserű , Nat. Rev. Drug Disc . 2012, 11 , 355; FDA: Sacks et al, JAMA 2014, 311 , 378; Pharma’s problems: Scannell et al, Nat. Rev. Drug Discov . 2012, 11 , 191

  3. A Significant Body of Evidence links Physical Properties to Probability of ADMET Risk Key properties: lipophilicity + ionisation. Property forecast index (PFI) ≥67% 34 -66% <33% % chance of achieving target in particular bin PFI : Young et al, Drug Disc. Toda y 2011, 16 , 822; Physical property reviews : Meanwell, Chem. Res. Toxicol . 2011, 24 , 1420; Young, Top Med. Chem . 2015, 9 , 1; Gleeson et al, in The Handbook of Medicinal Chemistry: Principles and Practice , eds A.M. Davis and S. Ward, RSC, 2015, p1-31; Hann & Keserű , Nat. Rev. Drug Disc . 2012, 11 , 355; Gleeson et al. Nat. Rev. Drug Disc. 2011, 10 , 197 ; Lipophilicity: Waring, Exp. Op. Drug Disc . 2010, 5 , 235; Ionisation : Charifson & Walters, J. Med. Chem. 2014, 57, 9701; Ar rings review : Ritchie & Macdonald, J. Med. Chem. , 2014, 57 , 7206; Critique - statistics : Kenny & Montanari, J. Comp.-Aid. Mol. Des . 2013, 27 , 1; Critique - toxicity data : Muthas et al, MedChemCommun . 2013, 4 , 1058

  4. Properties of Patented Compounds & Oral Drugs cLogP (1-octanol/water) Mol Wt Patent targets 2000-11 % Drugs or Patent targets Patent targets 2000-11 % Drugs or Patent targets Oral drugs published post 1980 Oral drugs published post 1980 20 30 25 15 20 15 10 10 5 5 0 0 cLogP bin Mol Wt bin • ‘Inflated’ patented compounds are likely to possess increased ADMET risks vs recently marketed drugs  pipeline attrition? • Will the probability of success in a portfolio of drug candidates increase as its balance of biological and physicochemical properties more closely resembles that of successful marketed drugs? • What other viable strategies exist for medicinal chemists to improve productivity? • Compound quality is a medicinal accountability. Fixed at the point of design, controllable in optimisation, must not be the root cause of clinical attrition Drug data: Leeson et al , Med. Chem. Comm . 2011, 2 , 91, updated to 2014 Patent data : Leeson & St-Gallay, Nature Revs. Drug Disc. 2011, 10 , 749

  5. Oral ‘Druglike’ Properties: Changes over Time Median 291 324 313 308 331 339 371 376 416 409 451 2.30 2.34 2.73 2.74 2.96 2.59 2.37 2.46 3.01 3.15 4.07 n 144 223 302 236 217 164 141 107 78 53 85 144 223 302 236 217 164 141 107 78 53 85 8 600 6 500 Mol Wt cLogP 4 400 2 300 0 -2 200 -4 100 1950 - 54 1955 - 59 1960 - 64 1965 - 69 1970 - 74 1975 - 79 1980 - 84 1985 - 89 1990 - 94 1995 - 99 2000 + 1950 - 54 1955 - 59 1960 - 64 1965 - 69 1970 - 74 1975 - 79 1980 - 84 1985 - 89 1990 - 94 1995 - 99 2000 + Publication Year Bin Publication Year Bin Increasing significantly ~10-20 years No change until 2000 + • Least change: cLogP, HBD, %PSA, Fsp3 & chiral atoms • Most change: Mol Wt, HBA, RotB, PSA & Ar; all increasing Hypothesis: drug properties changing least are more important Global oral drug approvals to end 2014. Property vs time publications : Leeson & Davis, J. Med. Chem 2004 , 47 , 6338; Proudfoot, Bioorg. Med. Chem. Lett. 2005, 15 , 1087; Leeson & Springthorpe, Nat. Rev. Drug Disc. 2007 , 6 , 881; Walters et al, J. Med. Chem . 2011, 54 , 6405; Leeson et al , Med. Chem. Comm . 2011, 2 , 91; Phase I-III data : Wenlock et al, J. Med. Chem . 2003, 46, 1250

  6. Does Size Matter? Mol Wt AZLogD <300 >0.5 AZLogD limits required 300-350 >1.1 to achieve >50% chance 350-400 >1.7 of high permeability for 400-450 >3.1 a given Mol Wt 450-500 >3.4 >500 >4.5 GSK: ADME ‘4/400’ rule AZ: Mol Wt & LogD dependent permeability Gleeson, J. Med. Chem . 2008, 51 , 817 Waring, Bioorg. Med. Chem. Lett., 2009 , 19 , 2844 Mol Wt vs cLogP vs TPSA n= 2138 oral drugs Acid Base Neutral Mol Wt Zwitterion eLogD Pfizer: ‘Golden triangle’ Ro5 QSAR: cLogP = 0.0173 Mol Wt - 0.564 O+N - Johnson et al, Bioorg. Med. Chem. 0.439 OH+NH + 0.246 n=2138, r 2 = 0.616 Lett ., 2009, 19 , 5560

  7. Inflation of ‘Druglike’ Physical Properties Oral Drugs Publication Decade 18 Companies Patents 2000-11 Oral Drugs Publication Decade Orals Phase I-III 2014 Orals Phase I-III 2014 500 500 Mol Wt <400 + cLogP <3 Wy BMS 44% post 1950 drugs BI 475 475 S-a Tak 6.6% Patent targets Nov SP Mrk GSK 450 450 Ro Lly BS AZ Orals Phase I-III 2014 (456) Orals Phase I-III 2014 (456) Median Mol Wt Median Mol Wt 425 425 Pfz Amg 1990s on (216) 1990s on (216) Abt Vtx 400 400 Mean values Chiral C Fsp3 Ar ring 375 375 1980s (375) 1980s (375) Post 1950 oral 1.65 0.43 1.77 350 350 drugs (n=1750) 1970s (381) 1970s (381) Patent targets 1.01 0.32 2.55 325 325 1950s (367) 1960s (538) 1950s (367) 1960s (538) (n=2605) 300 300 2 2 2.25 2.25 2.5 2.5 2.75 2.75 3 3 3.25 3.25 3.5 3.5 3.75 3.75 4 4 4.25 4.25 4.5 4.5 Median cLogP Median cLogP Drug data: Leeson et al , Med. Chem. Comm . 2011, 2 , 91, oral drugs updated to 2014 ; Patent targets 2000-11 from 18 companies: Leeson & St-Gallay, NRDD 2011, 10 , 749; Phase I-III orals : http://www. citeline.com/

  8. Disease Risk/Benefit & Property Inflation 36% 2012-14 FDA approvals are orphan drugs post-1990 Orals (n=216) Median cLogP Median Mol Wt ≥2 Ro5 unmet Kinase, HIV prot., HCV (n=45) 4.64 556 40% (18) Others (n=171) 3.07 420 12% (20) Pre-90: 6.5% Telaprevir: HCV NS3 protease Lapatinib: EGFR & ErbB2 kinases F N O Cl N H O N O O NH O NH O O S cLogP 5.8 H cLogP 5.4 NH HN N H O N Mol Wt 581 Mol Wt 680 O N O H N Dose 750mg tid , high fat food; sol. Dose 1500mg uid , 1hr before or after 4.7 μ g/ml, ‘less than marble;’ SDD meal; sol. 7 μ g/ml; hERG inhibitor; formulation; Black Box: serious skin Black Box: hepatotoxic; slow off-rate; reactions; efficacious, superceded standard treatment for breast cancer Medical need & efficacy can overcome risk & dosing inconvenience Telaprevir: Kwong et al, Nat. Biotech. 2011, 29 , 993; Lapatinib: Lackey & Cockerell in Kinase Inhibitor Drugs, Wiley, 2009, p41; Cancer drugs & food interaction: Weitschies, Clin. Pharm. & Therapeutics 2013, 94 , 441

  9. Physical Properties Tend to Increase in Optimisation: the ‘Leadlike’ Hypothesis Leadlike Oral Typical early library drugs combinatorial 25 Library % Compounds 20 15 10 5 0 100 200 300 400 500 600 700 Molecular Weight ‘Leadlike’ lead: Affinity >0.1 μ M; Mol Wt 100-350; cLogP 1-3 Leadlikeness: Teague, Davis, Leeson & Oprea, Angew. Chem. Int . Ed . 1999, 38 , 3743; Oprea et al, J. Chem. Inf. Comput. Sci . 2001, 41 , 1308; Hann et al, J. Chem. Inf. Comput. Sci. 2001, 41 , 856; Synthetic challenges: Doveston et al., Org. Biomol. Chem . 2015, 13 , 859

  10. Property Inflation in Optimisation Leadlike hypothesis : Teague et al, Angew. Chem. Int . Ed . 1999, 38 , 3743 n 1. Lead to drug - historical 469 Lead to Drug 6 6 Mol Wt ↑ 79% 5 5 2. Lead to drug - historical 62 8 8 cLogP ↑ 58% 3. Lead to drug, post 1990 60 7 7 Median cLogP Median cLogP Median cLogP 4. 1 st Drug to follow-on 74 10 5. Lit 2000s optimisation 1680 3 3 3 6. Lit 2000s HTS, hit-to-lead 335 1 1 1 2 2 2 7,8. HTS file/lead/patents 4 companies 9 9 4 4 4 9. Fragment optimisation 145 10. Lit 2000s LLE opt’n 57 LLE = p(Activity) – LogP/D Median Mol Wt Median Mol Wt Median Mol Wt 1. Hann, J.Chem. Inf. Comput. Sci. 2001, 41 , 856; 2. Oprea, J. Chem. Inf. Comput. Sci . 2001, 41 , 1308; 3. Perola, J. Med. Chem . 2010, 53 , 2986; 4 . Giordanetto, DDT 2011 ,16 , 722 ; 5. Morphy, J. Med. Chem. 2006, 49 , 2969; 6. Keseru, NRDD 2009, 8 , 203; 7. Macarron, NRDD 2011, 10 , 188; 8. Leeson, NRDD 2011, 10 , 749; 9. Ferenczy J. Med. Chem. 2013, 56 , 2478; 10. Hopkins, NRDD, 2014, 13 , 105

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend