ultrastrong spin motion coupling in nanofjber based
play

Ultrastrong spin-motion coupling in nanofjber-based optical traps - PowerPoint PPT Presentation

Ultrastrong spin-motion coupling in nanofjber-based optical traps Alexandre Dareau*, Y. Meng, P. Schneeweiss & A. Rauschenbeutel VCQ TU Wien Atominstitut (Vienna, Austria) * now at Laboratoire Charles Fabry, IOGS (Palaiseau,


  1. Ultrastrong spin-motion coupling in nanofjber-based optical traps Alexandre Dareau*, Y. Meng, P. Schneeweiss & A. Rauschenbeutel VCQ – TU Wien – Atominstitut (Vienna, Austria) * now at Laboratoire Charles Fabry, IOGS (Palaiseau, France)

  2. Nanofjber-based optical traps Optical nanofjber evanescent light fjeld 500 nm 125 µm [Vetsch et al. , PRL 104 , 203603 (2010)] Trapping atoms atom (cesium) light-assisted collisions during loading → max. 1 atom / site typically : N = 10 2 – 10 3 atoms OD = 1 – 10 red detuned light blue detuned light (1064 nm, attractive) (783 nm, repulsive) 1 Congrès Général SFP 2019 – Nantes Alexandre Dareau

  3. Trapping atoms in evanescent light fjelds Fictitious magnetic fjeld ! [Cohen-Tannoudji & Dupont-Roc, PRA 5 , 968 (1972)] polarization evanescent gradient of vector light fjeld gradient ac Stark shift (size ~ λ) analogous to a Zeeman interaction with depends on the atom’s spin state a gradient of fjctitious magnetic fjeld With our trap confjguration, to fjrst order : linear gradient nanofjber 2 Congrès Général SFP 2019 – Nantes Alexandre Dareau

  4. What is the efgect on the atoms ? « natural » Spin-motion coupling quantization axis (Cesium, F=4) atoms in nanofjber based optical trap harmonic Zeeman « spin-motion » coupling oscillator shift CQED model(s) quantized N-level Atom-light coupling light fjeld system (Jaynes-Cummings/Dicke) (in cavity) (atom[s]) [Schneeweiss, Dareau & Sayrin , PRA 98 , 021801(R) (2018)] 3 Congrès Général SFP 2019 – Nantes Alexandre Dareau

  5. Looking for an experimental signature... Our probe : fmuorescence spectroscopy heterodyne detection power spectral density (PSD) yields energy spectrum excitation beam local SPCM oscillator radial (x) beatnote ~ 174 kHz central frequency (10 MHz) for ofg-resonant spin-motion coupling azimuthal (y) ~ 96 kHz axial (z) → yields trap frequencies ~ 247 kHz (transitions from ground state to fjrst excited motional states) 4 Congrès Général SFP 2019 – Nantes Alexandre Dareau

  6. Experimental signature of the spin-motion coupling ! ofg-resonant coupling resonant coupling → vacuum Rabi splitting dressed states motional Rabi frequency state coupling 5 Congrès Général SFP 2019 – Nantes Alexandre Dareau

  7. Experimental signature of the spin-motion coupling ! Scanning across resonance [Dareau et al., PRL 121 , 253603 (2018)] Trap frequencies 0 f x = 149(2) kHz = 1 Power n z f y = 93(2) kHz y x , Spectral 3 - = Density f z = 243(5) kHz m F 0 (a. u.) m F = -4, n z = 1 Energy (kHz) Rabi frequency (for n=1) Ω x = 2π × 35(1) kHz m F = -4, n x = 1 Ω y = 2π × 36(1) kHz m F = -4, n y = 1 Ω x / ω x = 0.24(2) m F = -4, n xyz = 0 Ω y / ω y = 0.38(2) Zeeman shift ΔE (kHz) ultra-strong coupling ! + possible to increase coupling strength even further (e.g. in optical lattices) [Schneeweiss et al., PRA 98 , 021801(R) (2018)] 6 Congrès Général SFP 2019 – Nantes Alexandre Dareau

  8. Tuning the coupling strength Idea : compensate the vector ac Stark shift using fiber-guided laser at the “tune-out” wavelength (λ=880 nm) scalar polarizability vanishes → do not afgect scalar trapping potential → pure” fjctitious magnetic fjeld “ Experiment : reduction of vacuum Rabi splitting looking at direct transitions between excited dressed states yields Rabi splitting Rabi splitting decreases when tune-out laser power increases total compensation at ~ 400µW 7 Congrès Général SFP 2019 – Nantes Alexandre Dareau

  9. Conclusion & outlook Ultra-strong spin-motion coupling naturally present in nanofjber-based optical traps (& in optical microtraps) possible to tune with additional light fjeld analogy with CQED (Jaynes-Cummings / Dicke) Outlook : tunability Outlook : CQED increase coupling strength increase coupling strength Dicke model (F=4 N=8 atoms) → “deep-strong coupling regime” (coupling > trap frequency) dynamical tuning / quenches Ω(t) with variation faster than trap oscillation period. Phase transition in the “mesoscopic” regime (N < ∞ ) ? Dynamical Casimir efgect ? Note : also in optical lattices >> Schneeweiss et al., PRA 98, 021801(R) (2018) 8 Congrès Général SFP 2019 – Nantes Alexandre Dareau

  10. Thank you for your attention ! Slides available on www.adphys.eu References : Y. Meng, A. Rauschenbeutel, P. Schneeweiss & AD Observation of Ultrastrong Spin-Motion Coupling for Cold Atoms in Optical Microtraps, A. Dareau, Y. Meng, P. Schneeweiss, and A. Rauschenbeutel PRL 121 , 253603 (2018) [arXiv:1809.02488] Near-ground-state cooling of atoms optically trapped 300nm away from a hot surface, Y. Meng, A. Dareau, P. Schneeweiss, and A. Rauschenbeutel PRX 8 , 031054 (2018) [arXiv:1712.05749] Cold-atom based implementation of the quantum Rabi model (theory), P. Schneeweiss, A. Dareau, and C. Sayrin @adphys PRA 98 , 021801(R) (2018) [arXiv:1706.07781] 9 Congrès Général SFP 2019 – Nantes Alexandre Dareau

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend