tropical discriminants
play

Tropical Discriminants Eva Maria Feichtner feichtne@math.ethz.ch - PowerPoint PPT Presentation

Tropical Discriminants Eva Maria Feichtner feichtne@math.ethz.ch Department of Mathematics, ETH Zurich E.M. Feichtner: Tropical Discriminants; Algebraic and Geometric Combinatorics, Anogia, August 21, 2005. p.1/25 Outline 1. A


  1. Tropical Discriminants Eva Maria Feichtner feichtne@math.ethz.ch Department of Mathematics, ETH Zurich E.M. Feichtner: Tropical Discriminants; Algebraic and Geometric Combinatorics, Anogia, August 21, 2005. – p.1/25

  2. Outline 1. A -Discriminants 2. Tropical Geometry 3. Tropical A -Discriminants 4. The Newton Polytope of ∆ A 5. Regular Subdivisions and ∆ -Equivalence of Triangulations joint work/project with Alicia Dickenstein and Bernd Sturmfels E.M. Feichtner: Tropical Discriminants; Algebraic and Geometric Combinatorics, Anogia, August 21, 2005. – p.2/25

  3. A -Discriminants 1. [Gelfand, Kapranov, Zelevinsky 1992] ∈ Z d × n , rk A = d , � � A = a 1 · · · a n (1 , . . . , 1) ∈ row span A Q A = conv { a 1 , . . . , a n } polytope in R d , dim Q A = d − 1 X A = V ( � x u − x v | u, v ∈ N n with Au = Av � ) projective toric variety A = cl { ξ ∈ ( CP n − 1 ) ∗ | H ξ tangent to X A at a regular point } X ∗ dual variety If codim X ∗ A = 1 , X ∗ A = V (∆ A ) , where ∆ A is a unique irreducible polynomial, the A -discriminant. E.M. Feichtner: Tropical Discriminants; Algebraic and Geometric Combinatorics, Anogia, August 21, 2005. – p.3/25

  4. A -Discriminants: Classical Examples 1. Discriminant of a quadratic polynomial in 1 variable f ( x ) = a 2 x 2 + a 1 x + a 0 , a 2 � = 0 ∆ f = a 2 ⇐ ⇒ 1 − 4 a 2 a 0 = 0 f has a double root � � 1 1 1 ∆ f = ∆ A ∈ Z [ a 0 , a 1 , a 2 ] for A = 0 1 2 2. Discriminant of a degree n polynomial in 1 variable f ( x ) = � n i =0 a i x i , a n � = 0 f has a double root ⇐ ⇒ ∆ f = 0 � � 1 1 . . . 1 ∆ f = ∆ A ∈ Z [ a 0 , . . . , a n ] for A = 0 1 . . . n E.M. Feichtner: Tropical Discriminants; Algebraic and Geometric Combinatorics, Anogia, August 21, 2005. – p.4/25

  5. A -Discriminants: Classical Examples 2. Resultant of two polynomials in 1 variable n m � � a i x i , b i x i , a n � = 0 , b m � = 0 , f ( x ) = g ( x ) = i =0 i =0 ⇐ ⇒ f and g have a common root Res( f, g ) = 0 Res( f, g ) = ∆ A ∈ Z [ a 0 , . . . , a n , b 0 , . . . , b m ] for   1 1 . . . 1 0 0 . . . 0 A = 0 0 . . . 0 1 1 . . . 1     0 1 . . . n 0 1 . . . m Res( f, g ) = determinant of the Sylvester matrix E.M. Feichtner: Tropical Discriminants; Algebraic and Geometric Combinatorics, Anogia, August 21, 2005. – p.5/25

  6. A -Discriminants: Classical Examples 3. Discriminant of a deg 2 homogeneous polynomial in 3 variables     2 1 1 0 0 0 2 a 1 a 2 a 3 A = ∆ A = det 0 1 0 2 1 0 a 2 2 a 4 a 5         0 0 1 0 1 2 a 3 a 5 2 a 6 4. Discriminant of a deg 3 homogeneous polynomial in 3 variables   1 1 1 1 1 1 1 1 1 1 A = 0 0 0 0 1 1 1 2 2 3     0 1 2 3 0 1 2 0 1 0 deg ∆ A = 12 , 2040 terms E.M. Feichtner: Tropical Discriminants; Algebraic and Geometric Combinatorics, Anogia, August 21, 2005. – p.6/25

  7. A -Discriminants Call A defective if codim X ∗ A > 1 . The dual variety X ∗ A is also of interest in the defective case. Goal: Derive information on ∆ A , resp. X ∗ A , for instance degree and extreme monomials of ∆ A dimension, degree and Chow form of X ∗ A directly from A , without any reference to defining equations. Ansatz: Study the tropicalization of X ∗ A ! E.M. Feichtner: Tropical Discriminants; Algebraic and Geometric Combinatorics, Anogia, August 21, 2005. – p.7/25

  8. 2. Tropical Geometry ( R ∪ {∞} , ⊕ , ⊗ ) , x ⊕ y := min { x, y } , x ⊗ y := x + y tropical semi-ring complex projective τ − → polyhedral fans varieties Y ⊆ CP n − 1 irreducible variety, dim Y = r I Y ⊆ C [ x 1 , . . . , x n ] defining prime ideal τ ( Y ) = { w ∈ R n | in w ( I Y ) does not contain a monomial } tropicalization of Y τ ( Y ) is a pure r -dimensional polyhedral fan in R n , respectively TP n − 1 = R n / R (1 , 1 , . . . , 1) . E.M. Feichtner: Tropical Discriminants; Algebraic and Geometric Combinatorics, Anogia, August 21, 2005. – p.8/25

  9. Examples of Tropicalized Varieties 1. Y hypersurface in CP n − 1 f ∈ C [ x 1 , . . . , x n ] irreducible polynomial defining Y New( f ) Newton polytope, N New( f ) its normal fan τ ( Y ) = codim 1 -skeleton of N New( f ) Proof: { w ∈ R n | in w ( f ) is not a monomial } τ ( Y ) = { w ∈ R n | dim � � > 0 } = New(in w ( f )) { w ∈ R n | dim � � > 0 } = w -maximal face of New( f ) � = σ σ ∈N New( f ) codim σ> 0 E.M. Feichtner: Tropical Discriminants; Algebraic and Geometric Combinatorics, Anogia, August 21, 2005. – p.9/25

  10. Examples of Tropicalized Varieties 2. Y = X A toric variety, A ∈ Z d × n τ ( Y ) = row span A Proof: � x u − x v | u, v ∈ N n with Au = Av � I X A = { w ∈ R n | in w ( f ) is not a monomial for any f ∈ I X A } τ ( Y ) = { w ∈ R n | wu = wv whenever Au = Av } = = row span A 3. Y = V linear, resp. projective subspace τ ( Y ) = B ( M ( V )) Bergman fan of the matroid associated with V E.M. Feichtner: Tropical Discriminants; Algebraic and Geometric Combinatorics, Anogia, August 21, 2005. – p.10/25

  11. Digression: Bergman Fans of Matroids M connected matroid on { 1 , . . . , n } , rk M = r M w = { σ ∈ M | σ basis with maximal w -cost } for w ∈ R n B ( M ) = { w ∈ R n | M w is loop-free } Bergman fan w ∈ R n � � � � � w 2 B ( M ) = B ( M ) ∩ w i = 0 , i = 1 � � Bergman complex B ( M ) is a (rk M − 1) -dimensional subfan of N P ( M ) , where P ( M ) is the matroid polytope of M . E.M. Feichtner: Tropical Discriminants; Algebraic and Geometric Combinatorics, Anogia, August 21, 2005. – p.11/25

  12. Examples of Bergman Fans M = M ( K 4 ) r = 3 , n = 6 1 2 3 125 6 146 1 3 6 5 5 236 4 345 2 4 K 4 B ( M ( K 4 )) M = M ( K 4 \ e ) r = 3 , n = 5 2 4 3 125 1 3 5 345 1 2 4 K 4 \ e B ( M ( K 4 \ e )) E.M. Feichtner: Tropical Discriminants; Algebraic and Geometric Combinatorics, Anogia, August 21, 2005. – p.12/25

  13. Digression: Nested Set Fans of Matroids M connected matroid on { 1 , . . . , n } , rk M = r L M lattice of flats G ⊆ ( L M ) > ˆ 0 building set if for any X ∈ L M and max G ≤ X = { G 1 , . . . , G k } , there exists an isomorphism k � [ˆ [ˆ φ X : 0 , G i ] − → 0 , X ] . i =1 G min : irreducibles, dense edges, connected flats L M \ { ˆ G max : 0 } S ⊆ G nested set if for any pairwise incomparable X 1 , . . . , X t ∈ S , t ≥ 2 , � X i �∈ G . N ( G ) abstract simplicial complex of nested sets N ( G ) realization as a simplicial fan in R n E.M. Feichtner: Tropical Discriminants; Algebraic and Geometric Combinatorics, Anogia, August 21, 2005. – p.13/25

  14. Examples of Nested Set Fans M = M ( K 4 ) r = 3 , n = 6 1 1 3 3 125 125 146 146 6 6 5 5 1 2 3 4 5 6 236 236 345 345 2 4 4 2 L M N ( G min) N ( G max) M = M ( K 4 \ e ) r = 3 , n = 5 4 3 4 125 125 3 1 2 5 3 4 1 2 345 1 2 345 N ( G max ) N ( G min ) L ′ M E.M. Feichtner: Tropical Discriminants; Algebraic and Geometric Combinatorics, Anogia, August 21, 2005. – p.14/25

  15. Bergman Fans versus Nested Set Fans Proposition: [F. & Sturmfels ’04; F. & M¨ uller ’03] B ( M ) is subdivided by N ( G ) for any building set G in L M . N ( G ) is subdivided by N ( G ′ ) for any building sets G ⊆ G ′ in L M . Back to tropical geometry: V a linear subspace in C n , M the associated matroid, G any building set in L M τ ( V ) = supp B ( M ) = supp N ( G ) E.M. Feichtner: Tropical Discriminants; Algebraic and Geometric Combinatorics, Anogia, August 21, 2005. – p.15/25

  16. Tropical A -Discriminants 3. ∈ Z d × n , rk A = d , � � a 1 · · · a n (1 , . . . , 1) ∈ row span A A = Horn uniformization of A -discriminants: [Kapranov ’91] The dual variety X ∗ A is the closure of the image of the morphism P (ker A ) × ( C ∗ ) d / C ∗ ( CP n − 1 ) ∗ − → ϕ A : ( u 1 t a 1 : u 2 t a 2 : · · · : u n t a n ) . �− → ( u, t ) Tropical Horn uniformization: TP n − 1 B (ker A ) × R d − → τ ( ϕ A ) : �− → ( w, v ) w + vA im τ ( ϕ A ) = B (ker A ) + row span A Horn fan E.M. Feichtner: Tropical Discriminants; Algebraic and Geometric Combinatorics, Anogia, August 21, 2005. – p.16/25

  17. Tropical A -Discriminants Theorem: [DFS ’05] τ ( X ∗ A ) = B (ker A ) + row span A Example:   2 1 1 0 0 0 A = 0 1 0 2 1 0     0 0 1 0 1 2 5 245 5 4 2 1 6 4 356 1 123 6 τ ( X ∗ A ) B (ker A ) 3 3 2 E.M. Feichtner: Tropical Discriminants; Algebraic and Geometric Combinatorics, Anogia, August 21, 2005. – p.17/25

  18. Tropicalizing Monomials in Linear Forms U V f : C m → C r → C s − − U ∈ C r × m linear map, V ∈ Z s × r monomial map r � ( u k 1 x 1 + · · · + u km x m ) v ik f i ( x 1 , . . . , x m ) = k =1 Y UV := closure of im f Examples: r = s , V = I r : Y UV = im U linear space m = r , U = I m : Y UV = X V T toric variety Theorem: [DFS ’05] τ ( Y UV ) = V ◦ τ (im U ) = V ◦ B ( M (im U )) E.M. Feichtner: Tropical Discriminants; Algebraic and Geometric Combinatorics, Anogia, August 21, 2005. – p.18/25

  19. Tropicalizing Monomials in Linear Forms Retrieving the tropical discriminant: Set m = r , r = n + d , s = d , B a Gale dual of A , � � B 0 � A T � U = and V = I n . 0 I d UV = X ∗ Then, Y P A , and τ ( X ∗ A ) = B (ker A ) + row span A . E.M. Feichtner: Tropical Discriminants; Algebraic and Geometric Combinatorics, Anogia, August 21, 2005. – p.19/25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend