implicit matrix representation of curves via quadratic
play

Implicit matrix representation of curves via quadratic relations - PowerPoint PPT Presentation

Implicit matrix representation of curves via quadratic relations Fatmanur Yldrm Aromath Team Inria Sophia Antipolis M editerran ee joint work with Laurent Bus e and Cl ement Laroche What are parametric curves? R n := R


  1. Implicit matrix representation of curves via quadratic relations Fatmanur Yıldırım Aromath Team Inria Sophia Antipolis M´ editerran´ ee joint work with Laurent Bus´ e and Cl´ ement Laroche

  2. What are parametric curves? R n φ := R → � � f 1 ( s ) f 0 ( s ) , · · · , f n ( s ) s �→ , f 0 ( s ) image of φ defines a curve in R n .

  3. Implicitization Example Unit circle in R 2 .

  4. What are implicit equations used for ? Example: (plane curves) ◮ Is a given point on a given plane curve C ? p = ( x , y ) : point in R 2 , F ( T 1 , T 2 ) = 0 : implicit equation of the C . Question Is F ( x , y ) = 0 ?

  5. What are implicit equations used for ? Example: (plane curves) ◮ Is a given point on a given plane curve C ? p = ( x , y ) : point in R 2 , F ( T 1 , T 2 ) = 0 : implicit equation of the C . Question Is F ( x , y ) = 0 ? Example: (space curves) ◮ Is a given point p = ( x 1 , · · · , x n ) on a given space curve C in R n ? F 1 , · · · , F r with F 1 � = · · · � = F r define the C . Question Are F 1 ( x 1 , · · · , x n ) = 0 , · · · , F r ( x 1 , · · · , x n ) = 0 ?

  6. What are implicit equations used for ? ◮ Intersection of curves C 1 and C 2 , both in R 2 : C 1 is given by the parameterization R 2 → R � � f 1 ( s ) f 0 ( s ) , f 2 ( s ) s �→ , f 0 ( s ) C 2 is given by the implicit equation F ( T 1 , T 2 ) = 0. Question � � f 1 ( s ) f 0 ( s ) , f 2 ( s ) ◮ Is F = 0 ? f 0 ( s ) ◮ If yes, for which s values ?

  7. What are implicit equations used for ? ◮ Intersection of the curves C 1 and C 2 , both in R n , n ≥ 2 C 1 is given by the parameterization R n → R � � f 1 ( s ) f 0 ( s ) , · · · , f n ( s ) �→ s , f 0 ( s ) C 2 is given by the implicit equations F 1 ( T 1 , · · · , T n ) = 0 , · · · F r ( T 1 , · · · , T n ) = 0. Question � � � � f 1 ( s ) f 0 ( s ) , · · · , f n ( s ) f 1 ( s ) f 0 ( s ) , · · · , f n ( s ) ◮ Are F 1 = 0 , · · · , F r = 0 ? f 0 ( s ) f 0 ( s ) ◮ If yes, for which s values ? Difficulty ◮ Several substitutions, ◮ high degree of polynomials to manipulate.

  8. Plane curves Let K be a field. Algebraic parameterization φ is defined as follows P 2 φ := P → ( s : t ) �→ ( f 0 ( s , t ) : f 1 ( s , t ) : f 2 ( s , t )) , and its image defines the curve C . We assume that the f i ’s are of degree d for all i = 0 , 1 , 2 .

  9. Plane curves Implicitization via Sylvester matrix, notation : Syl T 0 , T 1 , T 2 : new indeterminates. I := ( f 0 T 1 − f 1 T 0 , f 0 T 2 − f 2 T 0 ) ⊂ K [ s , t , T 0 , T 1 , T 2 ] ideal. I contains implicit equation of the curve C . Example f 0 = s 3 − 1 9 st 2 − t 3 , f 1 = 14 s 3 + 2 3 s 2 t − 3 st 2 + t 3 , 2 s 2 t + 5 4 s 3 − 12 s 2 t − 4 3 st 2 − 97 t 3 . Then, f 2 = − 1 Syl ( f 0 T 1 − f 1 T 0 , f 0 T 2 − f 2 T 0 ) = − 1 2 T 1 − 2 5  T 1 − 14 T 0 3 T 0 9 T 1 + 3 T 0 − T 1 − T 0 0 0  − 1 2 T 1 − 2 5 0 T 1 − 14 T 0 3 T 0 9 T 1 + 3 T 0 − T 1 − T 0 0     − 1 2 T 1 − 2 5 0 0 T 1 − 14 T 0 9 T 1 + 3 T 0 − T 1 − T 0 3 T 0     T 2 + 1 − 1 5 9 T 2 + 4 2 T 2 + 12 T 0 − T 2 + 97 T 0 0 0  4 T 0 3 T 0    T 2 + 1 − 1 5 9 T 2 + 4   0 4 T 0 2 T 2 + 12 T 0 3 T 0 − T 2 + 97 T 0 0   T 2 + 1 − 1 9 T 2 + 4 5 0 0 4 T 0 2 T 2 + 12 T 0 3 T 0 − T 2 + 97 T 0 is a 6 × 6 matrix with linear entries in T 0 , T 1 , T 2 , and its determinant yields a polynomial of degree 6 in T 0 , T 1 , T 2 .

  10. Plane curves Definition Syzygy module of the parameterization φ , denoted by Syz , is ∈ K [ s , t ] 3 : p 0 ( s , t ) f 0 ( s , t )+ Syz ( f 0 , f 1 , f 2 ) := { ( p 0 , p 1 , p 2 ) p 1 ( s , t ) f 1 ( s , t ) + p 2 ( s , t ) f 2 ( s , t ) = 0 } . p 0 , p 1 , p 2 are called syzygies of f 0 , f 1 , f 2 . Moreover, Syz ( f 0 , f 1 , f 2 ) is a free module of K [ s , t ] with 2 generators p and q in K [ s , t ] 3 : p := ( p 0 , p 1 , p 2 ) and q := ( q 0 , q 1 , q 2 ) .

  11. Plane curves Definition Syzygy module of the parameterization φ , denoted by Syz , is ∈ K [ s , t ] 3 : p 0 ( s , t ) f 0 ( s , t )+ Syz ( f 0 , f 1 , f 2 ) := { ( p 0 , p 1 , p 2 ) p 1 ( s , t ) f 1 ( s , t ) + p 2 ( s , t ) f 2 ( s , t ) = 0 } . p 0 , p 1 , p 2 are called syzygies of f 0 , f 1 , f 2 . Moreover, Syz ( f 0 , f 1 , f 2 ) is a free module of K [ s , t ] with 2 generators p and q in K [ s , t ] 3 : p := ( p 0 , p 1 , p 2 ) and q := ( q 0 , q 1 , q 2 ) . Definition { p , q } are called µ -basis of the parametric curve, if ◮ { p , q } is a basis of Syz ( f 0 , f 1 , f 2 ) and ◮ p , q have the lowest degree among all the basis of Syz ( f 0 , f 1 , f 2 ) . Moreover, deg ( p ) = µ 1 , deg ( q ) = µ 2 and d = µ 1 + µ 2 . We assume that µ 2 ≥ µ 1 .

  12. Implicitization by resultant matrices with respect to p , q Notation p = p 0 ( s , t ) T 0 + p 1 ( s , t ) T 1 + p 2 ( s , t ) T 2 and q = q 0 ( s , t ) T 0 + q 1 ( s , t ) T 1 + q 2 ( s , t ) T 2 . Example f 0 = s 3 − 1 9 st 2 − t 3 , f 1 = 14 s 3 + 2 3 s 2 t − 3 st 2 + t 3 , 2 s 2 t + 5 4 s 3 − 12 s 2 t − 4 3 st 2 − 97 t 3 . f 2 = − 1 1007 / 84 s 2 + 233 / 168 st + 5431 / 56 t 2    2072314393 / 993502048 s + 491833577 / 124187756 t  p 0 q 0 − 97 / 112 s 2 − 43 / 504 st − 389 / 56 t 2  = p 1 q 1 − 147910417 / 993502048 s − 293063387 / 1490253072 t    − 23 / 42 s 2 + 97 / 126 st − 15 / 14 t 2 p 2 q 2 1568555 / 248375512 s − 9123809 / 2128932960 t Then, µ 1 = 1 and µ 2 = 2 . Syl ( p , q ) is a matrix of 3 × 3 size, with linear entries in T 0 , T 1 , T 2 , and its determinant yields a polynomial of degree 3 in T 0 , T 1 , T 2 .

  13. Implicitization by resultant matrices with respect to p , q Notation p = p 0 ( s , t ) T 0 + p 1 ( s , t ) T 1 + p 2 ( s , t ) T 2 and q = q 0 ( s , t ) T 0 + q 1 ( s , t ) T 1 + q 2 ( s , t ) T 2 . 1007 / 84 s 2 + 233 / 168 st + 5431 / 56 t 2    2072314393 / 993502048 s + 491833577 / 124187756 t  p 0 q 0 − 97 / 112 s 2 − 43 / 504 st − 389 / 56 t 2  = p 1 q 1 − 147910417 / 993502048 s − 293063387 / 1490253072 t    − 23 / 42 s 2 + 97 / 126 st − 15 / 14 t 2 p 2 q 2 1568555 / 248375512 s − 9123809 / 2128932960 t We have µ 1 = 1 , µ 2 = 2 . Definition B´ ezout matrix, denoted by Bez ( p , q ) = ( b ij ) 1 ≤ i , j ≤ µ 2 , is defined to be p ( τ, σ ) q ( s , t ) − p ( s , t ) q ( τ, σ ) � b ij t i − 1 s µ 2 − i +1 τ j − 1 σ µ 2 − j +1 . = s τ − t σ i , j =1 ◮ Bez ( p , q ) is a matrix of 2 × 2 size, with only quadratic entries in T 0 , T 1 , T 2 , and its determinant yields to a polynomial of degree 2 µ 2 in T 0 , T 1 , T 2 .

  14. Implicitization by resultant matrices with respect to p , q Notation p = p 0 ( s , t ) T 0 + p 1 ( s , t ) T 1 + p 2 ( s , t ) T 2 and q = q 0 ( s , t ) T 0 + q 1 ( s , t ) T 1 + q 2 ( s , t ) T 2 . ◮ Hybird B´ ezout matrix, HBez ( p , q ) is composed of the last µ 2 − µ 1 rows of Syl ( p , q ) in coefficients of q and the first µ 1 rows of Bez ( p , q ). Hence, again for the same example HBez ( p , q ) is a matrix of 2 × 2 size, with linear and quadratic entries in T 0 , T 1 , T 2 , and its determinant yields a polynomial of degree d = µ 2 + µ 1 in T 0 , T 1 , T 2 . � � last row of Syl s ( p , q ) ∗ ∗ HBez ( p , q ) T = 1st row of Bez s ( p , q ) ∗ ∗

  15. Hybrid B´ ezout p = a 0 ( T 1 , T 2 ) t µ 1 + a 1 ( T 1 , T 2 ) st µ 1 − 1 + · · · + a µ 1 ( T 1 , T 2 ) s µ 1 , q = b 0 ( T 1 , T 2 ) t µ 2 + b 1 ( T 1 , T 2 ) st µ 2 − 1 + · · · + b µ 2 ( T 1 , T 2 ) s µ 2 . b µ 2 b µ 2 − 1 · · · b 0   ...           ...       · · ·  b µ 2 b µ 2 − 1 b 0    Syl ( p , q ) =  a µ 1 a µ 1 − 1 · · · a 0       ...          ...     a µ 1 a µ 1 − 1 a µ 1 − 2   a µ 1 a µ 1 − 1 · · · a 0 last row of Syl ( p , q ) ∗ · · · ∗   d-1th row of Syl ( p , q ) ∗ · · · ∗   .   .     . ∗ · · · ∗   HBez ( p , q ) T =   d − µ 2 + µ 1 + 1th row of Syl ( p , q ) ∗ · · · ∗   1st row of Bez ( p , q )  ∗ · · · ∗      .   .   . ∗ · · · ∗   µ 1 th row of Bez ( p , q ) ∗ · · · ∗ Remark If µ 2 = µ 1 , then HBez ( p , q ) does not have any rows of Syl ( p , q ) , i.e. any rows with linear entries in T 0 , T 1 , T 2 .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend