sign patterns requiring a unique inertia
play

Sign patterns requiring a unique inertia Jephian C.-H. Lin - PowerPoint PPT Presentation

Sign patterns requiring a unique inertia Jephian C.-H. Lin Department of Applied Mathematics, National Sun Yat-sen University May 25, 2019 7th TWSIAM Annual Meeting, Hsinchu, Taiwan Sign patterns requiring a unique inertia 1/22


  1. Sign patterns requiring a unique inertia Jephian C.-H. Lin 林 晉 宏 Department of Applied Mathematics, National Sun Yat-sen University May 25, 2019 7th TWSIAM Annual Meeting, Hsinchu, Taiwan Sign patterns requiring a unique inertia 1/22 NSYSU

  2. Joint work with Pauline van den Driessche D. Dale Olesky University of Victoria University of Victoria Sign patterns requiring a unique inertia 2/22 NSYSU

  3. Sign pattern ◮ A sign pattern is a matrix whose entries are in { + , − , 0 } . ◮ The qualitative class of a sign pattern P = � � is the family p i , j � � of matrices A = a i , j such that sign( a i , j ) = p i , j . �� + �� � 1 � � 5 � + 0 2 0 3 0 Q ∋ , , . . . 0 − + 0 − 3 0 . 5 0 − 1 π Sign patterns requiring a unique inertia 3/22 NSYSU

  4. Require and allow ◮ Let P be a sign pattern. ◮ Let R be a property of a matrix. E.g., being invertible, being nilpotent, etc. ◮ P requires property R if every matrix in Q ( P ) has property R . ◮ P allows property R if at least a matrix in Q ( P ) has property R .   + 0 0  requires a positive determinant. − + 0  0 − + Sign patterns requiring a unique inertia 4/22 NSYSU

  5. Require and allow ◮ Let P be a sign pattern. ◮ Let R be a property of a matrix. E.g., being invertible, being nilpotent, etc. ◮ P requires property R if every matrix in Q ( P ) has property R . ◮ P allows property R if at least a matrix in Q ( P ) has property R .  + 0 −   allows a positive determinant. − + 0  0 − + Sign patterns requiring a unique inertia 4/22 NSYSU

  6. Inertia Let A be a matrix. ◮ n + ( A ) = number of eigenvalues with positive real part. ◮ n − ( A ) = number of eigenvalues with negative real part. ◮ n 0 ( A ) = number of eigenvalues with zero real part. ◮ n z ( A ) = number of eigenvalues that equals zero. The inertia of A is the triple ( n + ( A ) , n − ( A ) , n 0 ( A )) . yi x n − = 3 n + = 1 n 0 = 2 Sign patterns requiring a unique inertia 5/22 NSYSU

  7. Question: ◮ Which sign pattern requires a unique inertia? Outlines: ◮ Motivations from dynamical systems ◮ Sign patterns requiring a unique inertia Sign patterns requiring a unique inertia 6/22 NSYSU

  8. + + − − Predator-Prey Model dx dt = α x − β xy dy dt = δ xy − γ y (pictures from Wikipedia) Sign patterns requiring a unique inertia 7/22 NSYSU

  9. General form � � Let P = be a sign pattern. Let x i , j be variables for i , j ∈ [ n ] . p i , j The general form of P is a variable matrix X with  if p i , j = +; x i , j   ( X ) i , j = − x i , j if p i , j = − ;  0 if p i , j = 0 .  � x 1 , 1 � + � � + x 1 , 2 P = X = − − − x 2 , 1 − x 2 , 2 Write det( zI − X ) = S 0 z n − S 1 z n − 1 + S 2 z n − 2 + · · · + ( − 1 ) n S n . Then each S k is a multivariate polynomial in x i , j ’s. Sign patterns requiring a unique inertia 8/22 NSYSU

  10. Sign of a polynomial ◮ Let p be a polynomial. ◮ p can be expanded into a linear combination of non-repeated monomials.  0 if all coefficients = 0 ;     + if all nonzero coefficients > 0 and sign( p ) � = 0 ;  sign( p ) = − if all nonzero coefficients < 0 and sign( p ) � = 0 ;     # otherwise.  Sign patterns requiring a unique inertia 9/22 NSYSU

  11. Minor sequence ◮ Let X be the general form a sign pattern P . The minor sequence of P is s 0 , s 1 , . . . , s n , where s k = sign( S k ) . Theorem (JL, Olesky, and van den Driessche 2018) If s n = # , then P does not require a unique inertia. When P is a 2 × 2 sign pattern, P require a unique inertia if and only if s 2 � = # . � 0 � � 0 � � 0 � � 0 � + + − − − 0 + 0 − + + + [+ , 0 , +] [+ , 0 , − ] [+ , + , − ] [+ , + , +] � − � � − � � + � � + � − − − + − + + + − + − + [+ , # , − ] [+ , # , #] [+ , + , #] [+ , + , +] Sign patterns requiring a unique inertia 10/22 NSYSU

  12. Equivalence conditions Theorem (JL, Olesky, and van den Driessche 2018) Let P be a sign pattern. The following are equivalent: ◮ P requires a unique inertia. ◮ P requires a fixed n 0 . ◮ P requires a fixed n z and a fixed number of nonzero pure imaginary eigenvalues. yi x Sign patterns requiring a unique inertia 11/22 NSYSU

  13. Number of nonzero pure imaginary roots Substitute z by ti (with t � = 0): p ( z ) = x 5 + x 4 + 6 x 3 + 2 x 2 + 9 x − 3 = ( t 4 − 6 t 2 + 9 ) ti + ( t 4 − 2 t 2 − 3 ) odd part = x 2 − 6 x + 9 even part = x 2 − 2 x − 3 # of nonzero pure imaginary roots = 2 · # of common positive roots of the odd and the even parts For det( zI − X ) , odd part : S 0 , − S 2 , S 4 , . . . even part : S 1 , − S 3 , S 5 , . . . Sign patterns requiring a unique inertia 12/22 NSYSU

  14. Number of nonzero pure imaginary roots Substitute z by ti (with t � = 0): p ( z ) = x 5 + x 4 + 6 x 3 + 2 x 2 + 9 x − 3 = ( t 4 − 6 t 2 + 9 ) ti + ( t 4 − 2 t 2 − 3 ) odd part = x 2 − 6 x + 9 even part = x 2 − 2 x − 3 # of nonzero pure imaginary roots = 2 · # of common positive roots of the odd and the even parts For det( zI − X ) , odd part : S 0 , − S 2 , S 4 , . . . even part : S 1 , − S 3 , S 5 , . . . Sign patterns requiring a unique inertia 12/22 NSYSU

  15. Descartes’ rule of signs Theorem (Descartes’ rule of signs) Suppose p ( x ) � = 0 is a polynomial whose coefficients has t sign changes (ignoring the zeros). Then p ( x ) has t − 2 k positive roots for some k ≥ 0 . For example ◮ x 2 − 6 x + 9 has 2 or 0 positive roots, and ◮ x 2 + 0 x − 4 has 1 positive root. [Key: No sign changes, no positive roots!] Sign patterns requiring a unique inertia 13/22 NSYSU

  16. Descartes’ rule of signs Theorem (Descartes’ rule of signs) Suppose p ( x ) � = 0 is a polynomial whose coefficients has t sign changes (ignoring the zeros). Then p ( x ) has t − 2 k positive roots for some k ≥ 0 . For example ◮ x 2 − 6 x + 9 has 2 or 0 positive roots, and ◮ x 2 + 0 x − 4 has 1 positive root. [Key: No sign changes, no positive roots!] Sign patterns requiring a unique inertia 13/22 NSYSU

  17. Resultant k = 0 c k x ℓ − k and p 2 ( x ) = � m Let p 1 ( x ) = � ℓ k = 0 d k x m − k . The Sylvester matrix of p 1 and p 2 is an ( m + ℓ ) × ( m + ℓ ) matrix  c 0 d 0  c 1 c 0 d 1 d 0   ... ...   c 2 c 1 d 2 d 1     . . ... ...   . . . c 0 . d 0     . .   . . S ( p 1 , p 2 ) = . . c 1 . d 1     c ℓ d m     . .  . .  c ℓ . d m .     ... ...     c ℓ d m Sign patterns requiring a unique inertia 14/22 NSYSU

  18. The resultant of p 1 and p 2 is Res( p 1 , p 2 ) = det( S ( p 1 , p 2 )) . Theorem Res( p 1 , p 2 ) = 0 if and only if p 1 and p 2 have a common factor. Suppose P is a sign pattern with general form X . ◮ Res( P ) = Res( even part , odd part ) with the two parts from det( zI − X ) . Sign patterns requiring a unique inertia 15/22 NSYSU

  19. The resultant of p 1 and p 2 is Res( p 1 , p 2 ) = det( S ( p 1 , p 2 )) . Theorem Res( p 1 , p 2 ) = 0 if and only if p 1 and p 2 have a common factor. Suppose P is a sign pattern with general form X . ◮ Res( P ) = Res( even part , odd part ) with the two parts from det( zI − X ) . Sign patterns requiring a unique inertia 15/22 NSYSU

  20.  0 0  x 1 , 2  , − x 2 , 1 0 − x 2 , 3  0 − x 3 , 2 x 3 , 3 S 0 ( P ) = 1 S 2 ( P ) = x 1 , 2 x 2 , 1 − x 2 , 3 x 3 , 2 S 1 ( P ) = x 3 , 3 S 3 ( P ) = x 1 , 2 x 2 , 1 x 3 , 3 Res( P ) = x 3 , 3 ( x 1 , 2 x 2 , 1 − x 2 , 3 x 3 , 2 ) − x 1 , 2 x 2 , 1 x 3 , 3 = x 3 , 3 x 1 , 2 x 2 , 1 − x 3 , 3 x 2 , 3 x 3 , 2 − x 1 , 2 x 2 , 1 x 3 , 3 = x 3 , 3 x 2 , 3 x 3 , 2 . sign(Res( P )) = + = ⇒ never has common positive roots So, P does not allow any nonzero pure imaginary eigenvalues. Sign patterns requiring a unique inertia 16/22 NSYSU

  21. Exceptional, not exceptional A 3 × 3 sign pattern P is in E if its minor sequence is [+ , # , # , +] or [+ , # , # , − ] Sign patterns requiring a unique inertia 17/22 NSYSU

  22. 3 × 3 sign patterns not in E Theorem (JL, Olesky, and van den Driessche 2018) Let P be a 3 × 3 irreducible sign pattern that is not in E . Then P requires a unique inertia if and only if 1. s k 0 ∈ { + , −} and s k = 0 for all k > k 0 (fixed n z ), and 2. At least one of the following holds: (fixed n 0 − n z = 0 ) 2.1 s 2 = − . (no sign changes in even part) 2.2 s 1 , s 3 ∈ { + , − , 0 } and s 1 � = s 3 . (no sign changes in odd part) 2.3 Res( P ) has a fixed sign. Sign patterns requiring a unique inertia 18/22 NSYSU

  23. Embedded T 2 � + � + T 2 = allows two inertias ( 2 , 0 , 0 ) and ( 0 , 2 , 0 ) − −  + + 0   allows two inertias ( 2 , 0 , 1 ) and ( 0 , 2 , 1 ) − − 0  0 0 0 Lemma (JL, Olesky, and van den Driessche 2018) If P is a 3 × 3 sign pattern with T 2 (or T ⊤ 2 ) embedded in P as a principal subpattern, then P does not require a unique inertia.  0 0 +   has minor sequence [+ , # , # , +] − + +  0 − − Sign patterns requiring a unique inertia 19/22 NSYSU

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend