trapped ions
play

trapped - PDF document

Outline: trapped ions ion traps degrees of freedom state detection


  1. Outline: ����������������������� ����� • trapped ions • ion traps ��������������������� • degrees of freedom • state detection • interactions with lasers • decoherence we'd like to remove • motional • spin • decoherence we can cause • engineered reservoirs Frontiers of Quantum Decoherence - August 14, 2006 Fields Institute, University of Toronto Brian King http://physwww.mcmaster.ca/~kingb/King_B_h.html Linear ion traps: Ion traps in situ : • McMaster ion trap: 25 Mg + U 0 U 0 • axial confinement - static! V 0 , Ω V 0 , Ω ions α ~ 1 (geom.) laser beams radial • radial confinement -dynamic! ions a l x i a Ω Rf ≈ 14 MHz, U 0,DC ≈ 200 V, V 0,RF ≈ 300 V � ω z ≈ 1.4 MHz, ω R ≈ 4.3 MHz β ~ 1 (geom.) • ω ω r < Ω Ω RF ω ω Ω Ω " m ic ro m o tio n" " s e c u la r" m o tio n 0 2 4 tim e 6 8 1 0 • micromotion small, at different freq. after D. Berkeland, Rev. Sci. Inst. 73 , 2856 (02) 1

  2. Internal states - quasi- Internal states - quasi- spin-½ (qubit) : spin-½ (qubit) : 1. long-lived electronic states: 2. ground-state hyperfine levels: Be + (313 nm), γ/2π = 43 MHz P 3/2 Mg + (280 nm), τ = 3.5 ns P 1/2 Ca + , Sr + , Ba + , Hg + P 3/2 Cd + (215 nm) ~ 10 GHz P 1/2 866 nm,1092 nm 280 nm k 1 ≈ k 2 ,  1 � (or ↑ � ) 397 nm ∆ k ≈ 2k (90°) D 5/2 Energy 422 nm τ = 1 s Energy τ = 345 ms 194 nm 729 nm D 3/2 τ = 90 ms  1 � (or ↑ � ) 674 nm ultra-stable 282 nm S 1/2 1.78 GHz laser (τ > 10,000 y. )  0 � (or ↓ � ) S 1/2  0 � (or ↓ � ) Mg + • single-photon transitions: stable laser required • 2-photon, stimulated-Raman transitions: RF stability External states (motion): State preparation: • micromotion ignorable � secular motion • electronic: • optical qubit - kT � free! • secular motion: ~ harmonic osc. • hyperfine qubit: optical pumping • vibrational: Doppler, sideband, etc. laser cooling (not to scale!) • laser cooling → quantum harmonic oscillator State Detection: ~ electromagnetic field mode... • cycling transition - excited state decays back to |0 � � � � • multiple ions (cold): Γ ~ 1 MHz “  0 � ” “  1 � ” • each collective mode ≡ 1 harmonic oscillator  1 �  1 � i det.  0 � GHz - THz “1010” laser beam  0 � i 2

  3. Laser coupling: Laser coupling: • H I ∝ µ · E 0 e i ( kz - ω L t ) 1. Energy? detuning of laser(s) from resonance! • if ion vibrates, interaction strength modulated ω L = ω 0 : "carrier" − n 0,i ↔ n 1,i • H I ∝ µ · E 0 e i [ k z max cos ( ω z t ) - ω L t ] ω L = ω 0 + ω z : "blue sideband" − n 0,i ↔ n+1 1,i Classically: µ · E 0 Σ m i m J m ( k z max ) e im ω z t e − i ω L t ω L = ω 0 + ω z : "red sideband" − n 0,i ↔ n − 1 1,i sidebands! ~ 1 MHz can change ω z ...etc. (higher sidebands...) motion! ω L – ω 0  1 � i 0 • coupling strength: H I ∝ ½ µ E 0 (S + + S − ) e i [ k z 0 (a + a † ) − ω L t ] ω 0 Quantum: = Ω (S + + S − ) e i k z 0 (a + a † ) e − i ω L t  0 � i int. pic. : Ω (S + e i ω 0 t + H.C. ) e i k z 0 (a ) e − i ω L t e − i ω z t e i ω z t + a † Coupling to only the Laser coupling: motion: • ion is charged (!): E ↔ force • coupling strength determined by E gradients (dipole!) • ion is harmonically bound : resonance ( ω z ) 2. momentum... • classical force E 0 sin ( ω t −ϕ ) → displacement • coupling strength ~ Lamb-Dicke parameter wavevector • alternative: co-propagating lasers, detuning δω photon momentum ground state atom SHO momentum wavefcn width • " walking standing wave " 1. induces dipole moment • Lamb-Dicke parameter ~ p match to SHO 2. drives ion motion through dipole force • atom recoil vs. trap recoil! different dipole moment for | 0 � , | 1 � ? − µ + • "cat state" | 0 , α � + | 1 , β � 3

  4. Motional decoherence - Motional decoherence - heating: heating: L Deslauries et al. , quant-ph/0602003 ('06); C Monroe et al. , PRL 75 , 4011 ('95); DJ Wineland et al. , J. Res. NIST 103 , 259 ('98); L Deslauries et al. , quant-ph/0602003 ('06); C Monroe et al. , PRL 75 , 4011 ('95); DJ Wineland et al. , J. Res. NIST 103 , 259 ('98); QA Turchette, et al. PRA 61 , 063418 ('00); etc... QA Turchette, et al. PRA 61 , 063418 ('00); etc... • experimental insight: • "historical" problem: when cooled to | n=0 � , motion heats • 1 trap, 1 load, varying trap size (measure sidebands) • remark: ω z = 2 π × 10 MHz � λ EM = 30 m! • L Deslauries et al. , quant-ph/0602003 ('06) � lumped-circuit analysis of electromagnetic field − 3.47 ± 0.16 z trap 1. ~ z trap � blackbody radiation ≡ Johnson noise − 2 ) 2. not blackbody ( z trap SE ( ω ) ~ ω z − 1.8 ± 0.4 remark: motion only sensitive to noise at (near) ω z • 3. ↓ 10× for T ↓ 2× (blackbody ω z − 1 ) • rate too high for blackbody − fluctuating patch fields? 500 400 heating rate dn/dt (s − 1 ) heating rate dn/dt (s − 1 ) τ sys ~ 1 − 100 µ s 300 helpful(?) technical changes: • 200 1. shield trap electrodes from atom source 100 2. photoionization loading (M Drewsen) 50 NIST < 1 /(4 ms); IBM 1/(10 ms); Innsbruck 1/(190 ms); Michigan 1/(40 ms) z trap ( µ m ) trap freq. ( MHz ) Ramsey expt.: Spin decoherence: • superpositions - how do we characterize phase ? • spontaneous emission • use states with small energy separation or long lifetime laser intens. Γ • environmental fluctuations (B - Zeeman shift )  1 � • use field-insensitive states t R = 4 s! det. t R = 4 ms  0 � t C Langer et al. , PRL 95 , 060502 ('05) T/2, phase φ : t R : T/2: phase evolves 9 Be + , 2 S ½ create try to undo (Schrodinger) superposition superposition! vs. stable laser phase 1.0 1 superposition of carrier: spin loss of visibility 0.5 � decoherence spin/motion -eg. superposition 0.0 ( π /2 pulse) φ τ > 10 s sidebands -30 -20 -10 0 10 20 30 4

  5. Spin decoherence - Engineered reservoirs I: DFS's: H Häffner, et al. , Appl. Phys. B 81 , 151 ('05); C Langer et al. , PRL 95 , 060502 ('06) Myatt et al. , Nature 403 , 269 ('00); Turchette et al. , PRA 62 , 053807 ('00) • encode 1 qubit/pseudospin in 2 ( with symmetry ): 1. amplitude reservoir (high- T ): ξ p • prepare Bell states : • |10 � and |01 � are degenerate: insensitive to global ∆ B x NIST |0, α � + |1, β � • hyperfine levels 2.5 MHz Gaussian noise centred at 10.25 MHz ( ≈ν z ) 300 ms 1 s 2 s • cat state : background noise : sup. of number states : Innsbruck prepare here P 3/2 P 1/2 unstable , so D 5/2 D 3/2 +1/2 move down here! − 1/2 S 1/2 Engineered reservoirs I: Engineered reservoirs II: Myatt et al. , Nature 403 , 269 ('00); Turchette et al. , PRA 62 , 053807 ('00) Poyatos, et al. , PRL 77, 4728 ('96); Myatt et al. , Nature 403 , 269 ('00); Turchette et al. , PRA 62 , 053807 ('00) 2. phase reservoir (high- T ): 1. zero-temperature reservoir: red sideband + spont. em. p 9 Be + qubit: | ↑ � ≡ |1 � has • lifetime ~ 10,000 y x � add laser resonant with 2 P 1/2 | α , ↑ � + | −α , ↓ � • modulate trap strength with ( Γ / 2 π = 19 MHz ), strength Ω D 2.5 MHz Gaussian 1-100 kHz expt. ~ 1 ms � one phase/shot γ eff ~ Ω D ²/ Γ • random shot to shot sup. of number states : cat state : adjustable ratio Ω rsb : γ eff of • coherent to incoherent coupling 5

  6. Engineered reservoirs III Engineered reservoirs II: (?): Poyatos, et al. , PRL 77, 4728 ('96); Myatt et al. , Nature 403 , 269 ('00); Turchette et al. , PRA 62 , 053807 ('00) Poyatos, et al. , PRL 77, 4728 ('96) |0 � � � + |2 � � � , T = 0 reservoir : � � • different couplings → different reservoirs γ eff << Ω rsb → more exotic "ground states" 1. 2 lasers ω 0 ± ω z : squeezed vacuum coupling γ eff >> Ω rsb µ = ν � x- coupling, position pointer states • 2. 2 lasers ω 0 − ω z , ω 0 − 2 ω z : • Schrödinger-cat pointer states! Experimental Conclusions: demonstration: • example: Rabi flopping on carrier: • trapped ions: qubit and harmonic oscillator systems • experiment: • low decoherence repeat, change t • controllable coupling via lasers 1. trap atom 2. atom → ground state |0 � • motion: natural ("anomalous") decoherence • fluctuating ( patch? ) fields 3. turn on coupling laser for time t • reduced to acceptable levels ( for now... ) 4. turn on detection laser: look for light det. • spin: ("anomalous") decoherence |0 � • B -independent transitions → ~ 10 s (~ 10 5 τ op ) |0 � + |1 � Avg # counts 0 10 20 30 • decoherence-free subspaces: superpositions for > 10 s 10 8 0 10 20 30 6 • control of "engineered" reservoirs 4 |1 � arb. combination 2 • study models/dynamics of decoherence in controlled way 0 of |0 � � � � , |1 � � � � ! 0 1 2 3 4 5 0 10 20 30 t ( µ sec) 6

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend