quantum limited metrology examples with trapped atomic
play

Quantum-limited metrology (examples with trapped atomic ions) Dave - PowerPoint PPT Presentation

Quantum-limited metrology (examples with trapped atomic ions) Dave Wineland, Dept. of Physics, U Oregon, Eugene, OR & Research Associate, NIST, Boulder, CO Summary: Ramsey interferometer, angular momentum picture * application to


  1. Quantum-limited metrology (examples with trapped atomic ions) Dave Wineland, Dept. of Physics, U Oregon, Eugene, OR & Research Associate, NIST, Boulder, CO

  2. Summary: • Ramsey interferometer, angular momentum picture * application to spectroscopy/clocks • entangled states for increased precision * spin squeezing * spin “Schrödinger cat” states • efficient detection with ancilla qubits * application to spectroscopy/clocks • squeezed harmonic oscillator states Quantum-limited metrology (examples with trapped atomic ions) Dave Wineland, Dept. of Physics, U Oregon, Eugene, OR & Research Associate, NIST, Boulder, CO

  3. Mach-Zehnder interferometer: Ligo uses large incoming photon coherent states & different geometry φ 1 detect photon 50/50 2 in path 1 or 2 beam splitters Carl Caves, … review: V. Giovannetti, Science 306 , 1330 (2004).

  4. Ramsey interferometry with π /2 pulses like 50/50 beam splitters in Mach-Zehnder interferometer qubits (states | ↓〉 and | ↑〉 , E ↑ - E ↓ = ћ ω 0 ) applied radiation (“ π /2 pulses”) frequency ω near ω 0 π /2 π /2 M ↑ pulse pulse T measure N for each qubit: 0 0 π /2 “Signal” signal to noise independent of φ Noise ∆ Õ ≡ ( 〈 (Õ - 〈 Õ 〉 ) 2 〉 ) 1/2 (“projection noise”)

  5. Ramsey interferometer, angular momentum picture J = Σ S i ( S i = ½, equivalent to ensemble of two-level systems) e.g., H i = ћ γ S z B 0 R. Feynman et al. J. Appl. Phys. 28 , 49 (1957)) J = N/2, m J = -N/2 (“coherent spin state”) (in rotating frame of applied field (frequency ω ): z B z = B 0 ( ω o - ω )/ ω o (B rf >> B z ) B rf /2 y 〈 J (0) 〉 ( ω o - ω )T = π /2 x Free precession Second Ramsey pulse First Ramsey pulse N 〈 Ñ ↑ (t f ) 〉 Õ = Ñ ↑ (t f ) = Ĵ z + JÎ 〈 Ñ ↑ (t f ) 〉 = N/2(1 + cos( ω o - ω )T) (t f = T) 0 0 π /2 ϕ = ( ω o - ω )T →

  6. Measurement uncertainty relations : Uncertainty relation for operators: For operators Õ 1 , Õ 2 , Schwartz inequality (1) ∆ Õ 1 ∆ Õ 2 ≥ ½| 〈 [Õ 1 ,Õ 2 ] 〉 | (measurement fluctuations on identically prepared systems) for Õ 1 = x, Õ 2 = p, Eq. (1) gives position/momentum uncertainty relation Time/Energy uncertaintly relation: Uncertainty relations for parameters and operators For operator Õ( ξ ) ( ξ = parameter) ∆ Õ ≅ |d 〈 Õ 〉 /d ξ〉 | ∆ξ , ⇒ ∆ξ ≅ ∆ Õ /|d 〈 Õ 〉 /d ξ〉 | In (1), let Õ 1 = Õ, Õ 2 = H (Hamiltonian) ⇒ ∆ Õ ∆ H ≥ ½| 〈 [Õ, H ] 〉 | But, ћ dÕ/dt = i[ H ,Õ] + ћ ∂ Õ/ ∂ t ⇒ ∆ Õ ∆ H ≥ ½ ћ |d 〈 Õ 〉 /dt| (for ∂ Õ/ ∂ t = 0) ∆ Õ = |d 〈 Õ 〉 /dt| ∆ t, ⇒ ∆ H ∆ t ≥ ½ ћ

  7. Quantum limits to (angular momentum) rotation angle measurement For J(0) =  J, -J 〉 (“coherent” spin state) Uncertainty relation:   y    ΔJ ΔJ 1 J , J 1 J x y x y z 2 2 J z = - N/2 x angle sensitivity = N -1/2 N   J ( 0 ) 0 , z      J ( 0 ) J ( 0 ) J/2 1 N x y 2 observed for coherent spin states: • Itano et al. , PRA 47, 3554 (1993). 0 • Santarelli et al. , PRL 82 , 4619 (1999). 0 π /2 • … “projection noise” phase sensitivity ∆φ = N -½ independent of φ

  8. coherent spin state 〈 J (T) 〉 angle sensitivity = N -1/2 〈 J (0) 〉 ϕ = ( ω o - ω )T WANT: “spin-squeezed” state ∆ J z 〈 J (0) 〉 B. Yurke et al ., 〈 J (T) 〉 PRA 33 , 4033 (1986) ∆ J ⊥ Angle sensitivity = 〈 J (T) 〉

  9. Generate spin squeezing with H I =  χ J z 2 , ⇒ U = exp(-i χ tJ z 2 ) test by first H I = (  χ J z ) J z rotating state to | 〈 J 〉 | Δθ(coheren t) 1/ 2J 1/ √ 2J κ =   κ = signal-to-noise improvement  ∆ J ⊥ √ 2J Δθ(squeeze d) ∆ J ⊥ / | 〈 J 〉 | ΔJ / J  Note: | 〈 J 〉 | shrinks with squeezing • Sanders, Phys. Rev. A 40 , 2417 (1989) (nonlinear beam splitter for photons) • Kitagawa and Ueda, Phys. Rev. A 47 , 5138 (1993) (potentially realized by Coulomb interaction in electron interferometers) • Sørensen & Mølmer, PRL 82 , 1971 (1999) (trapped ions) • Solano, de Matos Filho, Zagury PRA 59 , 2539 (1999) (trapped ions) • Milburn, Schneider and James, Fortschr. Physik 48, 801 (2000) (trapped ions)

  10. apply H I ∝ J x 2 . For N = 2 , | ↓〉 | ↓〉 → cos( α )| ↓〉 | ↓〉 + i sin( α ) | ↑〉 | ↑〉 α = π /6 After π /2 pulse about B RF ∆ J z B RF 0.9 ξ anti-squeezing 0.8 〈 J (0) 〉 0.7 squeezing 0.6 0.5 0.4 ξ → π /2 Standard quantum limit θ | 〈 J 〉 | κ = ∆ J ⊥ √ 2J V. Meyer et al. , PRL 86 , 5870 (2001)

  11. J J coherent state squeezed state 〈 J z (t f ) 〉 〈 J z (t f ) 〉 -J -J π π ϕ = ( ω o - ω )T → ϕ → 0 0 κ ≅ 1.07, N = 2 for Ψ perfect V. Meyer et al. , PRL 86 , 5870 (2001)

  12. J. G. Bohnet, B. C. Sawyer, J. W. Britton, M. L. Wall, A. M. Rey, M. Foss-Feig, J. J. Bollinger (NIST) Science 352 , 1297 (2016) H I = (  χ J z ) J z κ = 2.5 (2), N = 85

  13. K. C. Cox, G. P. Greve, J. M. Weiner, and J. K. Thompson, PRL 116 , 093602 (2016) 87 Rb, | ↓〉 = |F=2, m F = 2 〉 , | ↑〉 = |3,3 〉 measure J z (via cavity frequency pulling) project to squeezed state κ exp = 2.3 (3) κ = 7.7 (3) N = 4 x 10 5 squeezing reduced by noise in feedback

  14. O. Hosten, N. J. Engelsen, R. Krishnakumar, M. A. Kasevich Nature 529 , 505 (2016) 87 Rb, | ↓〉 = |F=2, m F = 0 〉 , | ↑〉 = |3,0 〉 Measure J z via frequency shift of coupled cavity z z N = 5 x 10 5 κ = 10.1(2)

  15. Ramsey interferometry of 〈 J 〉 = 0 states: conventional Ramsey pulse R 1,2,…N ( π /2) entangling pulse T M measure | 〈 J 〉 | = 0 ! spin “Schrödinger cat” states ⇒ Heisenberg limit After second Ramsey pulse, measure parity operator: (J. Bollinger et al ., Phys. Rev. A 54 , R4649 (1996)) (two values possible: 1, -1)

  16. e.g., N = 6 Õ = N ↑ - N ↓ (nonentangled) Õ = parity (entangled) 6 2 〈 Õ 〉 → 0 -6 0 2 π ( ω - ω 0 )T → 〈 Õ 〉 (single measurement) ∆ϕ = 1/N, independent of ( ω - ω 0 )T “Heisenberg limit”

  17. Ramsey interferometry with two entangling pulses (D. Leibfried et al. Science ’04, Nature ‘05) entangling “ π /2” entangling “ π /2” pulse pulse M T t → measure all ions fluoresce no ions fluoresce

  18. Entangled state interferometry: (D. Leibfried et al. Science 2004, Nature 2005) “Signal” Noise N = 1 S/N = C C = 0.84(1) “win” if C > > 3 -1/2 = 0.58 N = 3 κ = 1.45(2) C N = 4 T. Monz et al. (Innsbruck) PRL 106, 130506 (2011) κ > 1 for N = 14 N = 5 C = 0.419(4) > 6 -1/2 = 0..408 N = 6 κ = 1.03(1)

  19. Entangled state interferometry: But! assumptions above: (D. Leibfried et al. Science 2004, Nature 2005) “Signal” Future: perfect probe oscillators, noise = projection noise • More and better Noise N = 1 Restrictions: • application of entangled states S/N = C • Huelga, Macchiavello, Pellizzari, Ekert, Plenio, Cirac C = 0.84(1) - to accurate clocks “win” if C > > 3 -1/2 = 0.58 PRL 79 , 3865 (1997) N = 3 κ = 1.45(2) - to metrology (phase decoherence of atoms) - ?? C N = 4 • …. • DJW et al. NIST J. Research 103 , 259 (1998) T. Monz et al., PRL 106, 130506 (2011) • André, Sørensen, Lukin, PRL 92 , 230801 (2004) κ > 1 for N = 14 (phase decoherence of source radiation) N = 5 • C. W. Chou et al., PRL 106, 160801 (2011) C = 0.419(4) > 6 -1/2 = 0..408 N = 6 κ = 1.03(1)

  20. Efficient detection with ancilla qubits (Al + optical clock experiment, NIST, Boulder) Coulomb interaction 1 P 1 2 P 3/2 3 P 0 optical (F=1, m F = -1) qubit λ = 167 nm λ = 267 nm 2 S 1/2 Be + hyperfine (F=2, m F = -2) 1 S 0 qubit transfer information to 9 Be + P. O. Schmidt et al., Science 309 , 749 (2005)

  21. Efficient detection with ancilla qubits (Al + optical clock experiment, NIST, Boulder) Coulomb interaction 2 P 3/2 3 P 1 3 P 0 2 0 n 1 1 S 0 Cool ions to ground state with Be + : | ↓〉 Be |n=0 〉 P. O. Schmidt et al., Science 309 , 749 (2005)

  22. Efficient detection with ancilla qubits (Al + optical clock experiment, NIST, Boulder) Coulomb interaction 2 P 3/2 3 P 1 3 P 0 2 0 n 1 1 S 0 If Ψ = | 3 P 0 〉 | ↓〉 Be |n=0 〉 P. O. Schmidt et al., Science 309 , 749 (2005)

  23. Efficient detection with ancilla qubits (Al + optical clock experiment, NIST, Boulder) Coulomb interaction 2 P 3/2 3 P 1 3 P 0 2 0 n 1 1 S 0 Is “QND” measurement; can repeat to increase Fidelity F = 0.85 → 0.9994 D. Hume et al. , Phys. Rev. Lett. 99 , 120502 (2007) Now, extensions to molecules: C.–W. Chou et al., Nature 545, 203 (2017). P. O. Schmidt et al., Science 309 , 749 (2005)

  24. Sensitive mechanical motion detection e.g. single harmonic motion α i D( α i ) ≡ exp[ α i a  - α i *a] with α = ( ∆ x + i ∆ p/m ω x )/(2x 0 )) here, κ ∝ α I / ground-state wave packet spread ground state (n =0) wavefunction

  25. Sensitive mechanical motion detection e.g. single harmonic motion (D( α ) ≡ exp[ α a  - α *a] with α = ( ∆ x + i ∆ p/m ω x )/(2x 0 ))

  26. generated with parametric drive trap potential modulated at 2 ω x κ ≅ 7.3 S. C. Burd et al., Science 364 , 1163 (2019).

  27. Photon metrology: • UV fibers: Y . Colombe et al., Optics Express, 22 , 19783 (2014) recipe: http://www.nist.gov/pml/div688/grp10/index.cfm • Detection without optics; D. Slichter, V. Verma MoSi

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend