trapped ions atoms quantum networks
play

Trapped Ions/Atoms: Quantum Networks Christian Vzquez, David - PowerPoint PPT Presentation

2 g C C 2 g 6 m 6 m Ritter et al., Nature 484, 195 (2012) Trapped Ions/Atoms: Quantum Networks Christian Vzquez, David Nadlinger Quantum Systems for Information Technology, Spring Term 2014 Christian Vzquez, David


  1. Δ Δ 2 g Ω C Ω C 2 g 6 μ m 6 μ m Ritter et al., Nature 484, 195 (2012) Trapped Ions/Atoms: Quantum Networks Christian Vázquez, David Nadlinger Quantum Systems for Information Technology, Spring Term 2014 Christian Vázquez, David Nadlinger | 09. 05. 2014 | 1

  2. This Talk ‣ Quantum Networks: Why? How? ‣ Two Entanglement Generation Experiments: Moehring et al., “Entanglement of single-atom quantum bits at a distance”, Nature 449, 68 (2007) Ritter et al., “An elementary quantum network of single atoms in optical cavities”, Nature 484, 195 (2012) ‣ Results/Comparison ‣ Perspectives Quantum Systems for Information Technology, Spring Term 2014 Christian Vázquez, David Nadlinger | 09. 05. 2014 | 2

  3. Why Quantum Networks? Large number of ions in one trap is not feasible: ‣ 1D string -> requirements on trap potential ‣ Heating rate increases linearly ‣ Mechanical mode density increases State of the art: ~15 qubits ‣ Entanglement of 14 ions Monz et al., Phys. Rev. Lett. 106, 130506 (2011) ‣ Simulations using long chains (~20 ions) C. Monroe and J. Kim, Science 339, 1164 (2013) Quantum Systems for Information Technology, Spring Term 2014 Christian Vázquez, David Nadlinger | 09. 05. 2014 | 3

  4. Why Quantum Networks? k systems of n qubits: ‣ With classical links: d = k 2 n (dim. of state space) With quantum links: d = 2 nk ‣ Multiple qubit entanglement -> State transfer, information sharing J. Kimble, Nature 453, 1023 (2008) Quantum Systems for Information Technology, Spring Term 2014 Christian Vázquez, David Nadlinger | 09. 05. 2014 | 4

  5. Requirements for Quantum Networks We infer the following requirements. For Nodes: ‣ Receiving, storing, releasing quantum information For Channels: ‣ Faithfully transmit quantum state between nodes Quantum Systems for Information Technology, Spring Term 2014 Christian Vázquez, David Nadlinger | 09. 05. 2014 | 5

  6. Linking Ion Traps “Quantum CCD” Photons Kiepinski, Monroe, Wineland, Nature 417, 709 (2002) Quantum Systems for Information Technology, Spring Term 2014 Christian Vázquez, David Nadlinger | 09. 05. 2014 | 6

  7. Entangling Atoms using Photons Heralded entanglement gen. using beamsplitter: Moehring et al. (2007) C. Monroe and J. Kim, Science 339, 1164 (2013) Cavity QED: Ritter et al. (2012) H. Kimble, Nature 453, 1023 (2008) Quantum Systems for Information Technology, Spring Term 2014 Christian Vázquez, David Nadlinger | 09. 05. 2014 | 7

  8. Entangling Atoms using Photons Heralded entanglement gen. using beamsplitter: Moehring et al. (2007) C. Monroe and J. Kim, Science 339, 1164 (2013) Cavity QED: Ritter et al. (2012) H. Kimble, Nature 453, 1023 (2008) Quantum Systems for Information Technology, Spring Term 2014 Christian Vázquez, David Nadlinger | 09. 05. 2014 | 8

  9. Moehring (2007): Exp. Setup ������ re PMT B F = 0 PBS 3 D[3/2] 1/2 2.2 GHz F = 1 Yb + Beam 1 m 2 P 1/2 935.2 nm F = 1 splitter ������ re 2.1 GHz F = 0 B PBS 369.5 nm Repump Yb + Laser PMT F = 2 2 D 3/2 B = 0.55 mT 0.86 GHz F = 1 Excitation Laser 2 S 1/2 F = 1 Qubit Levels 12.6 GHz F = 0 Quantum Systems for Information Technology, Spring Term 2014 Christian Vázquez, David Nadlinger | 09. 05. 2014 | 9

  10. � |1,1 > |1,0 > |1,–1 > 2 P 1/2 2.1 GHz |0,0 > � – �������� | � > � | � > |1,0 > |1, 1 > 2 S 1/2 |1,0 > | > |1,–1 > 12.6 GHz |0,0 > |0,0 > | > ���������������� Discard ���������� > |F=1 > | � > | � > | > | > ���� 2 S 1/2 |F=1 2 P 1/2 ( - ) / � 2 Quantum Systems for Information Technology, Spring Term 2014 Christian Vázquez, David Nadlinger | 09. 05. 2014 | 10

  11. 50/50 (non-polarizing) beam splitter: a a a a - + - b b b b atom photon 1 Consider input state | �� | � � � | �� | � � � � (| �� | � � � | �� | � � 2 1 2(| � | � + | � | � � | � | � � | � | � ) symmetric symmetric symmetric antisymmetric 1 1 ± ± where | � � | � � ± | � � | � � | � � | � � ± | � � | � � � 2 � 2 Detecting 2 coincident photons projects atoms into , | � coincident photons “herald” entanglement creation! Quantum Systems for Information Technology, Spring Term 2014 Christian Vázquez, David Nadlinger | 09. 05. 2014 | 11

  12. Entangling Atoms using Photons Heralded entanglement gen. using beamsplitter: Moehring et al. (2007) C. Monroe and J. Kim, Science 339, 1164 (2013) Cavity QED: Ritter et al. (2012) H. Kimble, Nature 453, 1023 (2008) Quantum Systems for Information Technology, Spring Term 2014 Christian Vázquez, David Nadlinger | 09. 05. 2014 | 12

  13. State Transfer, Entangl. Creation Ideal state transfer follows from adequate Raman pulses: photonic wave packet determined by Ω i (t) Cirac, Zøller, Kimble, Mabuchi, Phys. Rev. Lett . 78, 3221 (1997) Quantum Systems for Information Technology, Spring Term 2014 Christian Vázquez, David Nadlinger | 09. 05. 2014 | 13

  14. Ritter (2012): Entangl. Sequence Quantum Systems for Information Technology, Spring Term 2014 Christian Vázquez, David Nadlinger | 09. 05. 2014 | 14

  15. Ritter (2012): Entangl. Sequence Quantum Systems for Information Technology, Spring Term 2014 Christian Vázquez, David Nadlinger | 09. 05. 2014 | 15

  16. Ritter (2012): Entangl. Sequence Quantum Systems for Information Technology, Spring Term 2014 Christian Vázquez, David Nadlinger | 09. 05. 2014 | 16

  17. Ritter (2012): Entangl. Sequence Quantum Systems for Information Technology, Spring Term 2014 Christian Vázquez, David Nadlinger | 09. 05. 2014 | 17

  18. Ritter (2012): Entangl. Sequence Quantum Systems for Information Technology, Spring Term 2014 Christian Vázquez, David Nadlinger | 09. 05. 2014 | 18

  19. Ritter (2012): Entangl. Sequence Quantum Systems for Information Technology, Spring Term 2014 Christian Vázquez, David Nadlinger | 09. 05. 2014 | 19

  20. Ritter (2012): Entangl. Sequence Quantum Systems for Information Technology, Spring Term 2014 Christian Vázquez, David Nadlinger | 09. 05. 2014 | 20

  21. State Tomography ‣ Moehring (2007): Only correlations in unrotated basis ‣ Ritter (2012): Full state tomography 5 4 . 0 4 4 . 0 0.5 0.4 Detection probability 7 0 . 0 4 0 . 0 0.3 0.2 0 Re( ρ ) 0.1 1 RR 4 . 0 0 – �� �� �� �� RL 1 4 . 0 – Detected states –0.5 LR LL LR LL RL RR Quantum Systems for Information Technology, Spring Term 2014 Christian Vázquez, David Nadlinger | 09. 05. 2014 | 21

  22. Local rotations: fidelity oscillates ‣ Moehring (2007): Microwave pulses, di ff erent phase ‣ Ritter (2012): Extra B field applied for 12.5 µs 1.0 100 Fidelity with respective Bell state (%) 0.8 Probability for odd parity 80 0.6 60 0.4 40 20 0.2 0 0 20 40 60 0 –40 –20 0 20 40 60 80 100 Pulse delay ( � s) Quantum Systems for Information Technology, Spring Term 2014 Christian Vázquez, David Nadlinger | 09. 05. 2014 | 22

  23. Comparison Moehring (2008) Ritter (2012) Excitation to upper state Stimulated Raman Photon creation with short pulse process (STIRAP) Interference at 50/50 Raman process at target Photon use beam splitter atom F = 65 ± 3% Fidelity to target state F = 85 ± 1.3 % Success probability of p = 3.6 ∙ 10 -9 p = 0.02 entanglement scheme Rate of R = 0.118 min -1 R = 1800 min -1 entanglement creation Coincidence detection Entanglement heralding None Quantum Systems for Information Technology, Spring Term 2014 Christian Vázquez, David Nadlinger | 09. 05. 2014 | 23

  24. Perspectives N x N optical ELU crossconnect switch ELU ELU ‣ Review: ELU C. Monroe and J. Kim, Science 339, 1164 (2013) ‣ Entanglement by single photon detection Slodi č ka et al., PRL 110, 083603 (2013) ‣ Atom/photon quantum gates Reiserer et al., Nature 508, 237 (2014) Tiecke et al., Nature 508, 241 (2014) Quantum Systems for Information Technology, Spring Term 2014 Christian Vázquez, David Nadlinger | 09. 05. 2014 | 24

  25. Conclusion ‣ To build large-scale quantum systems, we need to create entanglement between distant nodes ‣ Two approaches for entangling atoms/ions discussed: ‣ Heralded entanglement creation using beam splitter (probabilistic) ‣ Atom-cavity nodes allowing deterministic interaction with photons Quantum Systems for Information Technology, Spring Term 2014 Christian Vázquez, David Nadlinger | 09. 05. 2014 | 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend