topic 3
play

Topic # 3 Second-order Systems Reference textbook : Control - PowerPoint PPT Presentation

ME 779 Control Systems Topic # 3 Second-order Systems Reference textbook : Control Systems, Dhanesh N. Manik, Cengage Publishing, 2012 1 Control Systems: Second-order Systems Learning Objectives Differential equations Normalized form


  1. ME 779 Control Systems Topic # 3 Second-order Systems Reference textbook : Control Systems, Dhanesh N. Manik, Cengage Publishing, 2012 1

  2. Control Systems: Second-order Systems Learning Objectives • Differential equations • Normalized form of differential equations • System transfer function • Pole-zero map • Overdamping • Critical damping • Underdamping • Undamped • Impulse, step, sinusoidal repsonse • Frequency response: magnitude and phase 2

  3. Control Systems: Second-order Systems Differential equation       m y c y k y K x ( t ) y(t) response Mass, m (kg) Damping coefficient, c (N-s/m) Stiffness, k (N/m) K static sensitivity x(t) input 3

  4. Control Systems: Second-order Systems Differential equation: Normalized form c k Kx ( t )    By dividing throughout by m    y y y m m m Undamped natural frequency, rad/s k   n m c Damping factor   2 km Kx t ( )      2 y 2 y y n n m 4

  5. Control Systems: Second-order Systems System transfer function Kx t ( )      2 y 2 y y n n m Y s ( ) K        2 2 X s ( ) m s 2 s n n 5

  6. Control Systems: Second-order Systems Classification of damping factors Damping Type Property factor   1 Overdamped Exponential decay   1 Critically damped Exponential decay   1 Underdamped Oscillatory decay   Undamped Oscillatory 0 6

  7. Control Systems: Second-order Systems Pole-zero map Y s ( ) K    ζ >1 overdamped     2 2 X s ( ) m s 2 s n n Poles       2   2 2 2 4  n n n s 1,2 2          2 s 1 1,2 n 7

  8. Control Systems: Second-order Systems Y s ( ) K Pole-zero map    ζ =1 critically damped     2 2 X s ( ) m s 2 s n n Poles   2       2 2 2 4  n n n s 1,2 2    s 1,2 n 8

  9. Control Systems: Second-order Systems Y s ( ) K Pole-zero map    ζ <1 underdamped     2 2 X s ( ) m s 2 s n n   2       2 2 j 4 2  n n n s 1,2 2 Damped natural      2 1 frequency d n       s j   tan 1,2 n d   2 1 Poles 9

  10. Control Systems: Second-order Systems Pole-zero map Y s ( ) K    ζ =0 undamped   2 2 X s ( ) m s j ω j  n x n s-plane   j  s 1,2 n Poles σ  j  x n 10

  11. Control Systems: Second-order Systems Overdamped case (ζ>1) Impulse response K       2 Differential equation y 2 y y x ( ) t n n i m   Kx 1    i Y s ( ) Laplacian of the output     2 2   m s 2 s n n     Kx 1 1     i                  2 2 2   2 m 1 ( s 1) ( s 1 n n n n n 11

  12. Control Systems: Second-order Systems Impulse response Overdamped case (ζ>1)     Kx 1 1     i Y s ( )                2  2 2    2 m 1 ( s 1) ( s 1 n n n n n     Kx         n t 2 i y t ( ) e sinh 1 t n      2  m 1  n Time-domain response 12

  13. Control Systems: Second-order Systems Impulse response Critically damped case ( ζ=1 )     Kx 1 Kx 1     i   i Y s ( )       2 2   2     m s 2 s m s   n n n   Kx       n t i y t ( ) te  n   m n 13

  14. Control Systems: Second-order Systems Impulse response Undamped case ( ζ<1 )      Poles s j 12 n d Laplace output   Kx 1    i Y s ( )           m ( s j )( s j ) n d n d   Kx Time-domain      n t  i y t ( ) e sin t output  d   m d 14

  15. Control Systems: Second-order Systems Impulse response Undamped case ( ζ<1 )   Kx      n t  i y t ( ) e sin t  d   m d K     n t Impulse response h t ( ) e sin t function  d m d t K             y t ( ) e sin F t ( ) d n  d m d 0 Duhamel’s integral 15

  16. Control Systems: Second-order Systems Impulse response 16

  17. Control Systems: Second-order Systems Step response Overdamped case (ζ>1)   Laplace of the    Kx 1 1  i      output Y s ( )                m s 2 2 s 1) s 1     n n n n            Kx               n t 2 2  i y t ( ) 1 e cosh 1 t sinh 1 t  n n 2     m  2    1   n Time-domain output 17

  18. Control Systems: Second-order Systems Step response Underdamped case ( ζ<1 )     Kx 1 1  i Laplace of the     Y s ( )           output  m s ( s j )( s j ) n d n d        Kx          n t   i y t ( ) 1 e cos t sin t  d d 2     m   2   1   n Time-domain of the output 18

  19. Control Systems: Second-order Systems Step response Underdamped case ( ζ<1 ) 19

  20. Control Systems: Second-order Systems Step response Underdamped case ( ζ<1 )       n t j ω Kx e        i y t ( ) 1 sin( t )  x  d 2   m  2    1 n s-plane   2 1     1 tan  σ    tan   2 1 x 20

  21. Control Systems: Second-order Systems Control Systems: Second-order Systems Step response Underdamped case ( ζ<1 )    2 t y t m ( ) e n r       r n 1 1 sin( t ) d r   Kx 2 1 i     t Rise time  r d 21

  22. Control Systems: Second-order Systems Control Systems: Second-order Systems Step response Underdamped case ( ζ<1 )   t Peak time  p d        Kx   2   1   Peak response i y t ( ) 1 e  p 2 m     n 22

  23. Control Systems: Second-order Systems Control Systems: Second-order Systems Step response Underdamped case ( ζ<1 ) Percentage overshoot M p     y t ( ) y      2 p 1 M e % p y  23

  24. Control Systems: Second-order Systems Control Systems: Second-order Systems Step response Underdamped case ( ζ<1 ) Settling time 4  t 2% criterion  s n 3  5% criterion t  s n 24

  25. Control Systems: Second-order Systems Step response Comparison of damping factors Second-order systems 25

  26. Control Systems: Second-order Systems Sinusoidal response K Differential equation       2 y 2 y y A sin t n n m      KA 1  Laplacian of the    Y s ( )         2 2 2 2 output  m s s 2 s n n 26

  27. Control Systems: Second-order Systems Sinusoidal response   Y s ( ) KA 1        2 2   X s ( ) m s 2 s n n  Y (j ) KA    Putting s=j ω       2 2 X (j ) m 2 j n n   Frequency ratio   2 r Y j ( ) m 1   n     2 X j ( ) KA (1 r 2 jr ) n ω forcing frequency Frequency response function 27

  28. Control Systems: Second-order Systems Sinusoidal response   2 Y j ( ) m 1 Magnitude   n M 20log dB      X j ( ) K 2    2 2 1 r 2 r     2 r    1   tan Phase    2 1 r 28

  29. Control Systems: Second-order Systems Magnitude Sinusoidal response 29

  30. Control Systems: Second-order Systems Phase Sinusoidal response 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend