thorium breeding and
play

THORIUM BREEDING AND ACTINIDE TRANSMUTATION IN A LASER - PowerPoint PPT Presentation

THORIUM BREEDING AND ACTINIDE TRANSMUTATION IN A LASER FUSION-FISSION (HYBRID) REACTOR Smer AHN ATILIM University, Faculty of Engineering, 06836 ncek Glba, Ankara, TRKYE sumer.sahin@atilim.edu.tr WORLD NUCLEAR POWER PLANTS


  1. THORIUM BREEDING AND ACTINIDE TRANSMUTATION IN A LASER FUSION-FISSION (HYBRID) REACTOR Sümer ŞAHİN ATILIM University, Faculty of Engineering, 06836 İncek Gölbaşı, Ankara, TÜRKİYE sumer.sahin@atilim.edu.tr

  2. WORLD NUCLEAR POWER PLANTS CONCENTRATION

  3. 750 000 000 people have even not seen electrical light throughout their life !!!

  4. Nuclear Fusion Energy  Magnetic confined fusion energy (MFE)  Inertial confined fusion energy (IFE)  Muon catalyzed fusion  Gravitational confined fusion energy (stars, sun) 4/27

  5. Nuclear fusion fuels • 2 H 1 ( D ); 3 H 1 (T); 3 He 2 Tritium is an artificial radioactive element!!! • 3 H 1  3 He 2 + 0 ß -1 (T ½ = 12.323 a) A tiny amount of D in 1 liter of natural water releases as much fusion energy as equivalent to 300 liters of gasoline. Fusion energy availability for 100 ’s of thousand years!!! “T” production . • 6 Li 3 + 1 n 0  3 H 1 (T) + 4 He 2 + 4.784 MeV • 7 Li 3 + 1 n 0  3 H 1 (T) + 4 He 2 + 1 n 0 ` + 2.467 MeV

  6. Pertinent fusion reactions • 2 H 1 (D) + 3 H 1 (T)  4 He 2 + 1 n 0 + 17.6 MeV. • 2 H 1 (D) + 2 H 1 (D)  3 H 1 + 1 H 1 + 4.03 MeV (50 %) • 2 H 1 (D) + 2 H 1 (D)  3 He 2 + 1 n 0 + 3.27 MeV (50 %) • 2 H 1 (D) + 3 He 2  4 He 2 + 1 H 1 + 18.3 MeV (*) (*) neutron free; extremely clean energy!!! Direct energy conversion with high conversion efficiency possible!!!

  7. Nuclear fusion fuels  Natural fuels: D (isotopic fraction in natural water: 150 ppm ) (1 liter see water contains 300 liters gasoline equivalent D)  3 He 2 (isotopic fraction in natural helium: 1.38 ppm ). Abundant 3 He 2 on the Moon (10 9 kg), in the Jupiter atmosphere (10 22 kg), Saturn atmosphere (10 22 kg), Uranus atmosphere (10 20 kg) and Neptune atmosphere (10 20 kg). Fusion energy is available for 100 ’s of millions years!!!

  8. General view of the National Ignition Facility (NIF)

  9. ICENES2009

  10. Target and illumination geometry for baseline NIF target design

  11. NIF laser light enters the two laser entrance holes to form an inner cone that illuminates the hohlraum wall near the equator of the capsule.

  12. Modified LIFE engine in the proposed design

  13. Geometrical model of the compressed fuel pellet ( Dimensions are in mm and not to scale )

  14. Geometrical model of the blanket (Dimensions are in mm and not to scale)

  15. Fusion reactor power: 500 MW th Neutron source strength: 1.774×10 +20 (14 MeV-n/sec) Plant factor: 100 % The neutron transport calculations: MCNPX-2.7.0 using continuous energy cross sections.

  16.   dE  dV = <Σ (n,T) ·Φ> : Total neutron reaction rate T 6 and T 7 = <Σ (n,T) ·Φ> : Volume and energy integrated tritium production in 6 Li and 7 Li per incident 14-MeV fusion neutron via 6 Li( n,α )T and 7 Li( n,n’,α )T reactions, respectively. TBR = T 6 + T 7

  17. Fission energy Q f Q f ( 232 Th): 171.91 Q f ( 235 U): 180.88 Q f ( 238 U): 181.31

  18. PURE FUSION BLANKET (NATURAL LITHUM COOLANT)

  19. Integral tritium production ratio in pure fusion blanket per neutron Lithum zone M thickness (cm) T 6 /n T 7 /n TBR 1.2098 50 0.8909 0.3462 1.2371 1.2158 60 0.0939 0.3729 1.3119 1.2192 70 0.0978 0.3920 1.3701 1.2220 80 1.0098 0.4055 1.4153 1.2233 90 1.0343 0.4149 1.4493 1.2240 100 1.0544 0.4216 1.4760

  20. Heat release in the pure fusion blanket/neutron, ΔR Li = 50 cm [MeV] Total Neutron  -ray Heating Zone# Material Heating Heating 3.6696 3.6696 2.5086E-06 1 Fusion fuel 1.2142 0.3058 0.9084 3 S-304 Steel Coolant 9.8584 9.2221 0.6363 4 Zone 0.6508 0.0660 0.5848 5 S-304 Steel 1.4395 0.6665 0.7730 6 Graphite 0.2260 0.0029 0.2231 7 S-304 Steel Total 17.0585 13.933 3.1256 M 1.2098

  21. Lithium burn up: ~50 kg/year 6 Li ~22.5 kg/year 7 Li Initial lithium charge: 25.8 tonnes by DR = 50 cm

  22. Neutron flux spectrum in the coolant zone ( ΔR Li = 50 cm)

  23. Neutron flux spectrum in the coolant zone ( ΔR Li = 100 cm)

  24. TBR (1/n.cm 3 ) in coolant zone

  25. ∆V.TBR (1/n.cm 3 ) in coolant zone

  26. BLANKET WITH THORIUM

  27. Fusion-Fission (Hybrid) Reactors Energy multiplication and fissile fuel production in a fusion-fission (hybrid) reactor could lead earlier market penetration of fusion energy for commercial utilization.

  28. Conventional nuclear reactors operate on once- through basis Exploitation capability of nuclear resources • ~ 1 % of the uranium resources will be used with plutonium recycle in LWRs • Thorium reserves, 3-4 times abundant than uranium reserves, are not used !!! Sustainable nuclear economy must use all nuclear resources!!!

  29. Neutron and  -particles spectrum at a plasma temperature of 70 keV

  30. Fission cross sections of 238 U and 232 Th

  31. Neutron/fission (  )

  32. TRISO coating provides structure stability and contains fission products

  33. Fissile/Fertile fuel particle (large kernel)

  34. Very high burn ups in ceramic-coated (TRISO) fuel, experimentally demonstrated at Peach Bottom-1 MHR

  35. Deep burn up in ceramic-coated (TRISO) fuel, as demonstrated at Peach Bottom-1 MHR (> 95 % 239 Pu transmuted) A) 650 000 MW.d/tonne B) 180 000 MW.d/tonne

  36. Microscopic cross-section of Triso fuel particles (Image INL) httpwww.world-nuclear-news.orgENF Triso fuel triumphs at extreme temperatures (1800 oC)

  37. Permanent immobilization of residual radioactivity for deep burn TRISO spent fuel after Irradiation

  38. Three years of studies by teams at the US Department of Energy's Idaho National Laboratory (INL) and Oak Ridge National Laboratory (ORNL) have found that most fission products remain inside irradiated Triso particles even at temperatures of 1800°C - more than 200°C hotter than in postulated accident conditions. Various projects around the world are developing high- temperature gas-cooled nuclear reactors which use TRISO-type fuel, building on many years of research. The fuel itself was developed primarily in Germany during the 1980s. The US teams have been studying their version of the fuel since 2002, and the findings have direct implications for the safety for advanced high-temperature reactors

  39. Composition and dimensions of basic TRISO fuel particle Composition and dimensions of basic TRISO (Sefidvash, et al., 2007)* fuel particle Density D in D out Volume Volume Mass Material (g/cm 3 ) (cm 3 ) (cm) (cm) Fraction (g) ThO2 10 0 0.158 0.002064 0.370427 0.020642 PYC 1 0.158 0.176 0.000789 0.141573 0.000789 (porous) PYC 1.8 0.176 0.18 0.000199 0.035708 0.000358 (dense) 3.17 0.18 0.2 0.001135 0.203606 0.003598 SiC OPyC 1.8 0.2 0.22 0.001386 0.248685 0.002496 Average 5.00319 0.22 0.005573 0.02788

  40.  % 1 ThO 2 + % 99 Nat-Li (1.57 tones of thorium at startup)  % 2 ThO 2 + % 98 Nat-Li (3.15 tones of thorium at startup)  % 3 ThO 2 + % 97 Nat-Li (4.72 tones of thorium at startup)  % 4 ThO 2 + % 96 Nat-Li (6.29 tones of thorium at startup)  % 5 ThO2 + % 95 Nat-Li (7.87 tones of thorium at startup)  % 10 ThO2 + % 90 Nat-Li (15.74 tones of thorium at startup)

  41. Tritium production/neutron in the presence of thorium in the lithium coolant ΔR Li = 50 cm ΔR Li = 100 cm V TRISO [%] T 6 T 7 TBR T 6 T 7 TBR 0.8909 0.3462 1.2371 1.0544 0.4216 1.4760 0 0.8899 0.3390 1.2290 1.0510 0.4107 1.4618 1 0.8894 0.3321 1.2215 1.0482 0.4004 1.4485 2 0.8883 0.3254 1.2137 1.0448 0.3904 1.4352 3 0.8869 0.3190 1.2059 1.0418 0.3809 1.4227 4 0.8871 0.3126 1.1997 1.0390 0.3714 1.4104 5 10 1.1622 1.01998 0.3274 0.8807 0.2815 1.3474

  42. Neutron multiplication reaction rates in the blanket V TRISO Total 232 Th(n,2n) 232 Th(n,f) Li(n,2n) [%] (n,2n) 0 0 2.0072E-02 2.0072E-02 0 1 3.0914E-03 1.9684E-02 2.2776E-02 8.4789E-04 2 6.1161E-03 1.9294E-02 2.5410E-02 1.6794E-03 3 9.0784E-03 1.8914E-02 2.7992E-02 2.4954E-03 4 1.1983E-02 1.8542E-02 3.0525E-02 3.2981E-03 5 1.4828E-02 1.8176E-02 3.3004E-02 4.0838E-03 10 2.8119E-02 1.6406E-02 4.4525E-02 7.7876E-03

  43. Total fissile fuel production ΔR Li = 50 cm ΔR Li = 100 cm 232 Th(n,  )/n 233 U(kg/a) 232 Th(n,  )/n 233 U (kg/a) V TRISO [%] 1 7.9680E-03 17.22 9.6224E-03 20.80 2 1.5309E-02 33.09 1.8827E-02 40.70 3 2.2508E-02 48.66 2.7836E-02 60.17 4 2.9702E-02 64.21 3.6856E-02 79.67 5 3.6902E-02 79.77 4.5865E-02 99.15 10 7.3880E-02 159.71 9.1550E-02 197.9

  44. Total heating and energy multiplication/neutron in the hybrid blanket with variable TRISO (ThO 2 ) volume in the coolant, ΔR Li = 50 cm [MeV/n] V TRISO [%] 0 1 2 3 4 5 10 Zone Material # 1 Fusion fuel 3.6696 3.6698 3.6695 3.6696 3.6696 3.6695 3.6694 S-304 Steel 1.2142 1.1985 1.2021 1.2047 1.2108 1.2174 1.2455 3 Coolant 9.8584 10.1116 10.329 10.535 10.732 10.919 11.784 4 Zone 5 S-304 Steel 0.6508 0.6083 0.5902 0.5728 0.5587 0.5440 0.4874 6 1.4395 1.3992 1.3645 1.3268 1.2960 1.2632 1.1153 Graphite 7 S-304 Steel 0.2260 0.2225 0.2190 0.2123 0.2079 0.2046 0.1862 17.059 17.21 17.374 17.521 17.675 17.817 18.488 Total M 1.2098 1.2206 1.2322 1.2426 1.2536 1.2636 1.3112

  45. ∆V. 232 Th(n,  ) (1/n) with ΔR Li = 100 cm

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend