thin pixel assembly fabrication development with backside
play

Thin pixel assembly fabrication development with backside - PowerPoint PPT Presentation

Thin pixel assembly fabrication development with backside compensation layer R. Bates 1 , C. Buttar 1 , T. McMullen 1 , G. Pares 2 , L. Vignoud 2 , 1. Experimental Particle Physics Group, University of Glasgow, UK G12 8QQ 2. CEA Lti


  1. Thin pixel assembly fabrication development with backside compensation layer R. Bates 1 , C. Buttar 1 , T. McMullen 1 , G. Pares 2 , L. Vignoud 2 , 1. Experimental Particle Physics Group, University of Glasgow, UK G12 8QQ 2. CEA Léti – MINATEC, 17 rue des Martyrs ; F-38054 GRENOBLE - France On behalf of the UK ATLAS Pixel upgrade groups

  2. Contents • Motivation for thin hybrid modules – Material via worked examples – Through silicon vias • Manufacture of hybrid module • Issues with thin chip processing – Existing technology for ATLAS IBL process • Backside dielectric layer bow compensation – Technical motivation – Run though the process – First results 16/05/2014 R. Bates 2

  3. Motivation for thin hybrid modules • Reduced mass of vertex/tracking systems • Interconnect through the readout circuit – Through silicon vias 16/05/2014 R. Bates 3

  4. ATLAS Phase-II Tracker Upgrade All-silicon inner detector (strips + expanded pixel system) Long ¡Barrel ¡Strips ¡ Short ¡Barrel ¡Strips ¡ Occupancy for < µ >=200 (in %) Forward ¡Strips ¡ Barrel ¡pixel ¡ Forward ¡pixel ¡ ATLAS Letter of Intent Baseline LoI layout of the new ATLAS inner tracker for HL-LHC CERN-2012-022 Aim to have at least 14 silicon hits everywhere (robust tracking) LHCC-I-023 16/05/2014 R. Bates 4

  5. ATLAS Phase-II Tracker Upgrade All-silicon inner detector (strips + expanded pixel system) Long ¡Barrel ¡Strips ¡ Short ¡Barrel ¡Strips ¡ Occupancy for < µ >=200 (in %) Forward ¡Strips ¡ Barrel ¡pixel ¡ Forward ¡pixel ¡ ATLAS Letter of Intent Baseline LoI layout of the new ATLAS inner tracker for HL-LHC CERN-2012-022 Aim to have at least 14 silicon hits everywhere (robust tracking) LHCC-I-023 16/05/2014 R. Bates 5

  6. Phase-II pixel system in numbers 7.8m 2 of Silicon hybrid pixel modules Outer radii: 2 layers Layer 3 & 4: 2940 4-chip modules Issues: large scale production of cheap thinned modules 1.7x10 15 n/cm 2 ; 0.9MGy Forward pixels 16 rings per side 1680 4-chip modules Issues: large scale Inner radii: 2 layers production of cheap thinned Layer 1: 352 2-chip modules modules Layer 2: 576 4-chip modules 1.8x10 15 n/cm 2 ; 0.9MGy Issues: radiation damage & small pixels 1.4x10 16 n/cm 2 ; 7.7MGy 16/05/2014 R. Bates 6

  7. Outer radii pixel system • Pixel modules should be • 2 outer Barrel layers & Disks – Large with high active fraction – Sensor planar n-in-p – Match to FE-I4 geometry ~ 2x2cm 2 – Small contribution to material budget – Pixel size 50 µm x 250 µm – Radiation tolerant – 2x2 FE-I4 (Quad) ~4x4cm 2 – Highly granular – Aim for sensor & ROIC thickness – Optimised for production ~150 µm each Phase-II upgrade ATLAS Current ATLAS 16/05/2014 R. Bates 7

  8. Material and Si Module fraction module silicon Material of a ring module other Total = 2.02% X0 cables and tabs EOS card Front End Plate Rear End Plate Outer Cylinder Middle Cylinder Inner Cylinder Outer Rings structure Middle Rings Inner Rings 10% Fraction of a Radiation Length 9% 8% 7% • 200um ROIC, 300um sensor 6% • Ti Pipe 5% – OD 2.275mm / ID 2.000mm 4% • Carbon foam supports 3% – 4.6mm carbon foam (0.36gcm -3 ) 2% – 0.13mm CFRP facings on both 1% sides ( FAW=100gcm -2 ) 0% 1.74 1.82 1.9 1.98 2.06 2.14 2.22 2.3 2.38 2.46 2.54 2.62 2.7 2.78 2.86 2.94 3.02 3.1 3.18 3.26 3.34 3.42 3.5 3.58 • Silicon = 30% of ring! Pseudo-rapidity 16/05/2014 R. Bates 8

  9. CLIC Vertex detector material • Single point resolution ≈ 3-5 µm – Vertexing & momentum measurement • 0.2% X0/layer including supports Single point Multiple • Air cooled resolution scattering term • Hybrid Pixel module: – Fully depleted : Time slicing (~ 10ns) for background reduction – Fast sparsified read-out – High single point resolution (3µm) : 20x20 µm2 pixel sizes • CLICpix 50um thick ROIC and 50um thick sensor 16/05/2014 R. Bates 9

  10. Through Silicon Vias (TSV) advantages • TSVs connect readout chips to the PCB: easy to tile chips on all 4 sides, fill factor close to 100%. – Distributed periphery removes EOCL dead area • TSV – Almost negligible inductance -> good for fast digital signals – Resistance: <100mOhm/TSV (20mOhm with wirebonds) • Many contacts distributed across the chip à much smaller chip IR drop. • TSV last process preferred – Removes requirement on CMOS vendor • High aspect ratio (5:1) vertical side wall TSV 16/05/2014 R. Bates 10

  11. TSV options Via 40 µm OD -> 120 µm substratee 16/05/2014 R. Bates 11

  12. Process stages for 2.5/3D chip stacking AR 1:1 AR 2:1 AR 3:1 u TSV Last u Interconnections u Under Bump Metallurgy (UBM) u Redistribution layer (RDL) u Stacking 16/05/2014 R. Bates 12

  13. Combine technologies for greater functionality TSV and micro-bump stack detail Solder bumps TSV 16/05/2014 R. Bates 13

  14. Bump deposition process 1. Wafer cleaned & inspected 2. TiW/Cu seed layer for UBM 3. Photolithography 4. Electroplating Cu (Ni) UBM/Pillar 5. Solder deposited on top of UBM 1. Different alloys available 6. Photoresist stripped 7. Seed layers wet etched away 8. Bump formed and isolated 9. Solder reflow– a flux-free process Solder bumping using 1. Solder reflow done in reducing gas electroplating in a single mask ambient processes 16/05/2014 R. Bates 14

  15. Flip-chip process • Different bump structures possible: – Structure #1: ROIC: Cu/SnAg – Sensor: thin film UBM – Structure #2: ROIC: Ni/SnPb – Sensor: Ni/SnPb 240C Structure #1, Cu/SnAg Structure #2 solder bumps structure and pillars bonded against Pt assembly sequence UBM 16/05/2014 R. Bates 15

  16. Room Temperature Indium bump bonding • Indium bump bonding can be done at room temperature – Avoids issues with ROIC bowing • Process: – Thick photoresist – Cr UBM process – thermal evaporation – Indium deposition – thermal evaporation 22micron ¡bumps ¡grown ¡ – Lift-Off using ¡evaporator ¡and ¡ – Flip-chip formed ¡using ¡reflow ¡oven ¡ at ¡RAL ¡ • 99.9% Electrical yield – Daisy chain test structures • Produced first FE-I4 module • Good bond yield (>99%) with a few shorts 16/05/2014 R. Bates 16

  17. Simply process thin wafer and flip-chip Bump Process Flow • Evaluated bond yield of 1. Deposit UBM and bumps on ROIC thinned single chip module 2. Thin ROIC to 200 µm / Diced – Use noise and cross-talk measurements 3. On vacuum jigs perform flip-chip for tack bond to sensor • Large areas of non-bonded 4. Re-flow in reducing atmosphere in pixels at the corners & edges oven (240C) unsupported – Have 3% to 66% open bumps assembly • 100% Yield for full Self-align bumps thickness devices Obtain good electrical properties Issues with bump yield due to significant bowing of large readout chip 16/05/2014 R. Bates 17

  18. Bow on thin die 260C RT • FE-I4B die • Silicon thickness = 100 µm • Annealed after CMP • TDM data • Bow of die results in low Sn solder bumped assembly yield due to high re-flow temperature 16/05/2014 R. Bates 18

  19. Calculation of bow • 1 µ m thick AlSi deposited on • Simple bi-metallic calculation for a bare Si wafer at 750 µ m uniform thin film layer (<5% • Good linear behavior during substrate thickness) thermal cycle • Stoney’s Equation for film stress • Modulus (from nanoindentation) = 45 Gpa 2 σ f = E s t s • CTE is estimated ~ 18 ppm 6 R t f 32 • From CTE miss-match 28 24 Warpage ( µ m) ( ) Δ T 20 σ f = E f α f − α s 16 12 8 L 2 E f Δ α Δ Tt f B = 3 4 0 -4 0 50 100 150 200 250 300 2 4 t s E s -8 Temperature (C) -12 -16 • Keep Δ T small for t s thin -20 Well modeled 16/05/2014 R. Bates 19

  20. More complex ROICs • Model can be extended to • Die has many layers with cover many layers with different mask densities differing mask densities – Also film thickness 16% of – But need to know details substrate • For n layers with γ % coverage per layer " % B tot = 3 L 2 n E f ( i ) α f ( i ) t f ( i ) Δ T f ( i ) ∑ ∼ 16 µ m γ f ( i ) $ ' 2 4 E s t s # & i = 1 • With lack of knowledge eventually measure die bow • Model effect of extra well SEM x-section of FE chip showing characterized deposited the full front-side CMOS stack and differing metal densities through the layers layers 16/05/2014 R. Bates 20

  21. FE-I4B 100 µm thick with no stress compensation 25C 260C 200 µm 260C 260C 20 µm 25C 16/05/2014 R. Bates 21

  22. TDM Measurements of 100 µ m thick FEI4B Die thermally cycled 3 times RT to 260C Non-linear deformation with temperature 125 Bow sign change with increasing temperature 100 75 50 Start 25 Warpage ( µ m) 0 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 -25 Temperature (C) -50 -75 -100 -125 -150 -175 -200 Bare Die 16/05/2014 R. Bates 22

  23. How to live with bow issue • Temporary bond thinned • No open bonds ROIC (150 µm) to thick glass support wafer • Process wafer and flip- Glass support wafer chip • Laser Release support wafer • Used for IBL – <300 modules • Limitations – speed & cost of processes 90 µm ROIC – Heat, laser/UV glue removal, melts bumps with very thin ROIC 16/05/2014 R. Bates 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend