the y 4260 and y 4360 enhancements within coupled channels
play

The Y (4260) and Y (4360) enhancements within coupled-channels - PowerPoint PPT Presentation

Meson 2018, Krakow - Poland, June 7, 2018 The Y (4260) and Y (4360) enhancements within coupled-channels Susana Coito Collaborator: Francesco Giacosa Jan Kochanowski University, Kielce, Poland Introduction Ideas about dynamical poles:


  1. “Meson 2018”, Krakow - Poland, June 7, 2018 The Y (4260) and Y (4360) enhancements within coupled-channels Susana Coito Collaborator: Francesco Giacosa Jan Kochanowski University, Kielce, Poland

  2. Introduction Ideas about dynamical poles: scalar mesons Boglione, Penington, PRD 65 , 114010 (2002) van Beveren, Rijken, Metzger, Dullemond, Rupp, Ribeiro, ZPC 30 , 615 (1986) van Beveren, Rupp, IJTPGTNO 11 , 179 (2006) [arXiv:hep-ph/0605317] open-charm axial mesons van Beveren, Rupp, PRL 91 , 012003 (2003) charmonium scalar Gamermann, Oset, Strottman, and Vacas, PRD 76 , 074016 (2007)

  3. Within similar models to the one we present here a 0 (980) Wolkanowski, Giacosa, Rischke, PRD 93 , 014002 (2016) K ∗ 0 (800) Wolkanowski, So� ltysiak, Giacosa, NPB 909 , 418 (2016) 2.5 2.0 � � m � � GeV � 1 � 1.5 1.0 d K 0 0.5 0.0 0.8 1.0 1.2 1.4 1.6 1.8 2.0 m � GeV � K π

  4. Concerning the Y (4260) A signal that has 1st been detected in 40 40 40 40 2 2 2 2 Events / 20 MeV/c Events / 20 MeV/c Events / 20 MeV/c Events / 20 MeV/c 4 10 3 10 30 30 30 30 2 10 10 1 3.6 3.8 4 4.2 4.4 4.6 4.8 5 20 20 20 20 10 10 10 10 0 0 0 0 3.8 3.8 3.8 3.8 4 4 4 4 4.2 4.2 4.2 4.2 4.4 4.4 4.4 4.4 4.6 4.6 4.6 4.6 4.8 4.8 4.8 4.8 5 5 5 5 - - - - 2 2 2 2 m( m( m( m( + + + + J/ J/ J/ J/ ) (GeV/c ) (GeV/c ) (GeV/c ) (GeV/c ) ) ) ) π π π π π π π π ψ ψ ψ ψ PRL 95 ,142001 (2005) BABAR, e + e − → J /ψπ + π − . M ∼ 4 . 26 GeV, Γ = 50 − 90 MeV yet showing no decays to any of the open OZI-allowed decay channels!

  5. There is the idea that such enhancement might not be a true resonance D ∗ s D ∗ s X-sect(events/20 MeV/c 2 ) (a) 80 • 60 • • • 40 • • • • • • • • • • • • • • • • • • 20 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 4.0 4.5 5.0 5.5 m π + π − J/ψ (GeV) van Beveren, Rupp, PRL 105 , 102001 (2010) van Beveren, Rupp, PRD 79 , 111501(R) (2009)

  6. D s D s , D ∗ D ∗ , D s D ∗ s , D ∗ s D ∗ s , DD 1 , D ∗ D 1 , D s D 1 s σ (pb) h c π + π − 200 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 100 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 ⋆ ⋆⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ σ (pb) J/ψπ + π − • 100 • • • • • • • • • • • • • • • 50 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ••••• • • • • • • • • • • • • • • • • • • • • • • • • 0 • • • 4.0 4.2 4.4 4.6 E (GeV) ψ (4040), ψ (4160), ψ (4415) Data: BESIII PRL 118 ,092001(2017); PRL 118 ,092002(2017)

  7. Recent ideas about the Y (4260) and the Y (4390) - Possible identification of Y states with ψ states through coupling to decay channels in a “molecular” manner - Interference between ψ (4160) and ψ (4415) states Lu, Anwar, Zou, PRD 96 , 114022 (2017) Chen, Liu, Matsuki, EPJC 78 , 136 (2018) Zhang, Zhang, PRD 96 , 054008 (2017) He, Chen, EPJC 77 , 398 (2017) Wang, CPC 41 , 083103 (2017)

  8. On the other hand, the determination of the ψ masses is not always easy to disentagle... ψ (3770), ψ (4040), ψ (4160), ψ (4415) σ (nb) (a) 5 (a) 0.5 0 0 (b) (b) 5 0.5 0 0 10 (c) (c) 1 0 0 3.7 3.8 3.9 4 3.8 4 4.2 4.4 4.6 4.8 5 – ), GeV/c 2 M(D D BELLE, PRD 77 ,011103(R)(2008) e + e − → D ¯ D

  9. An effective Lagrangian model production experiment → interaction region → final hadrons anihilation and production vertex meson-meson loops ⇔ coupled-channels

  10. The case of the ψ (3770) with D 0 ¯ D 0 and D + D − loops S. Coito, F. Giacosa, arXiv:1712.00969 a Lagrangian density for a V → PP 2 � D i − ∂ µ ¯ � � ∂ µ D i ¯ L ψ D i ¯ D i = ig ψ D ¯ D ψ µ D i D i i Vertex decay width and amplitude D i ( s ) = k i ( s , m D i ) D i | 2 Γ ψ → D i ¯ |M ψ → D i ¯ 8 π s 4 D i | 2 = g 2 3 k 2 i ( s , m D i ) f 2 |M ψ → D i ¯ Λ ( s ) ψ D ¯ D Form-factor 2 / Λ 2 f Λ ( q i ) = e − q i

  11. Building a propagator 1 − g µν + p µ p ν � � G µν ( p ) = p 2 − m 2 ψ + i ε m 2 ψ ∆ µν ( p ) = G µν ( p ) + G µµ ′ ( p )Π µ ′ ν ′ ( p ) G ν ′ ν ( p ) + · · · , � Π µν ( p ) = g 2 Π i µν ( p , m D i ) ψ D ¯ D i − g µν + p µ p ν Π( s ) = 1 � � � Π µν ( p ) = g 2 Π i ( s , m D i ) ψ D ¯ p 2 D 3 i

  12. 1 ∆( s ) = s − m 2 ψ + Π( s ) For N channels N Ω j ( s ) + i √ s Γ j ( s ) � � � Π( s ) = , Ω , Γ ∈ ℜ , j √ s Γ j ( s ′ , m 1 , m 2 ) � ∞ Ω j ( s , m 1 , m 2 ) = PP d s ′ s ′ − s π s th The unitarized spectral function is given by d ψ ( E ) = − 2 E π Im ∆( E ) � j Γ j ( E 2 ) = 2 E 2 [ E 2 − m 2 ψ + Re Π( E 2 )] 2 + [Im Π( E 2 )] 2 π

  13. The ψ (3770) cross section σ (nb) 8 D ¯ D ∗ ⋆ ∗ ∗∗ ••• ∗ 6 ∗ ∗ ∗ ••• • ∗ •• 4 ∗ • ∗ ∗ ⋆ ∗ ⋆ • • 2 • • ∗ ⋆ ⋆ 3.74 3.76 3.78 3.80 E (GeV) Data: BES PLB 668 ,263 (2008); BES PRL 97 ,121801 (2006) Fit parameters: m ψ : 3773 . 05 ± 0 . 95 MeV Λ: 272 . 55 ± 1 . 17 MeV χ 2 / d . o . f - 0 . 86

  14. Pole trajectories Re E (GeV) 3.72 3.74 3.76 3.78 3.80 ↓ ◦ ⋄ -0.01 • ↑ ⋄ • -0.02 Im E (GeV) ◦ 0 . 7 g g • -0.03 ⋄ 1 . 3 g • 3741 . 2 − i 18 . 5 MeV 3776 . 8 − i 12 . 3 MeV ◦ - 3773 . 5 − i 5 . 5 MeV ⋄ 3741 . 0 − i 9 . 5 MeV 3784 . 9 − i 17 . 2 MeV

  15. The ψ (4040) and the Y (4008) cf. poster of M. Piotrowska (collab. with F. Giacosa and P. Kovacs) Total spectral function with channels DD , DD ∗ , and D ∗ D ∗ 8 Our model Breit � Wigner 6 d � m � � GeV � 1 � 4 2 0 3.7 3.8 3.9 4.0 4.1 4.2 4.3 m � GeV � Poles around: ψ (4040) : 4053 − i 39 MeV Y (4008) : 3934 − i 30 MeV

  16. The ψ (4160) and the Y (4260) ... cf. S. Coito, PoS Hadron2017 (2018) 030. Coupled-channels (through the loops): below ψ (4160) threshold: DD DD ∗ D ∗ D ∗ D s D s D s D ∗ s above ψ (4160) threshold: D ∗ s D ∗ s DD 1 DD ′ 1 (not seen yet) suppressed channel, but seen in the experiment: J /ψ f 0 (980) ... and the ψ (4415) and Y (4390) below ψ (4415) threshold: DD DD ∗ D ∗ D ∗ D s D s D s D ∗ s D ∗ s D ∗ s DD 1 DD ′ 1 above ψ (4415) threshold: D ∗ D 1 D ∗ D ′ 1 D s D s 1 D s D ′ s 1 suppressed channel, but see in the experiment: J /ψ f 0 (980)

  17. Interactions: V → PP , PV , VV , PA , VS � D 2 − ∂ µ ¯ � ∂ µ D 1 ¯ PP : L I = ig VPP ψ µ D 2 D 1 + h . c . D ∗ µν + h . c . , PV : L I = ig VPV ˜ Ψ µν D ¯ Ψ µν = 1 2 ǫ µναβ Ψ αβ , Ψ αβ = ∂ α ψ β − ∂ β ψ α , D ∗ µν = ∂ µ D ∗ ν − ∂ ν D ∗ µ ˜ VV : L I = i � � D ∗ µ ¯ D ∗ µ ¯ D ∗ ν 2 − D ∗ ν 2 g VVV Ψ µν + h . c ., Ψ µν = ∂ µ ψ ν − ∂ ν ψ µ . 1 1 2 PA : L I = ig ψ DD 1 ψ µ D ¯ D µ 1 + h . c . SV : L I = g ψ µ J /ψ µ f 0 (980)

  18. Line-Shape for the ψ (4160) d s (GeV − 1 ) 8 6 4 2 4.10 4.20 4.30 E (GeV) 5 channels: DD DD ∗ D ∗ D ∗ D s D s D s D ∗ s

  19. d S (GeV − 1 ) 10 8 6 4 2 4.10 4.20 4.30 E (GeV) 5 channels, + D ∗ s D ∗ s , and + DD 1 DD ′ 1 (with an arbitrary coupling)

  20. 0.15 σ (nb) • 0.10 • • • • • • • • • • • • • • • 0.05 • • • • • •• • • • • •• • • • • • • • • • • • • •• ••••••• • • • • • • • • • • • 4.10 4.20 4.30 E (GeV) Channel J /ψ f 0(980) compared to J /ψππ data

  21. Summary and Conclusions • The ψ and Y spectra above D ¯ D threshold are very intriguing as there is a big quantum mixing • Loops ⇔ coupled-channels are important and simple Breit-Wigner fits are too naive • We show results of an effective Lagrangian approach for the ψ (3770), ψ (4040) and ψ (4160) interfering with their respective open-decay channels. • In the presented results the Y (4260) do not emerge as a companion pole of the ψ (4160), but a full study of the interferences including closed-channels and mixing among the different ψ is still undergoing. ∴

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend