thermal properties of dense matter
play

Thermal Properties of Dense Matter The Homogeneous Phase C. - PowerPoint PPT Presentation

Thermal Properties of Dense Matter The Homogeneous Phase C. Constantinou IKP, FZ J ulich 17 August 2015, Stockholm Workshop on Microphysics In Computational Relativistic Astrophysics Collaborators: M. Prakash, B. Muccioli & J.M.


  1. Thermal Properties of Dense Matter The Homogeneous Phase C. Constantinou IKP, FZ J¨ ulich 17 August 2015, Stockholm Workshop on Microphysics In Computational Relativistic Astrophysics Collaborators: M. Prakash, B. Muccioli & J.M. Lattimer C. Constantinou Thermal Properties of Dense Matter

  2. The Models 1 1 0.8 0.8 Landau 0.6 0.6 m*/m Dirac 0.4 0.4 M*/m 0.2 0.2 MDI(A) SkO' MFT 0.2 dlog(m*)/dlog(n) 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 SNM Dirac/3 PNM 0 0 Landau -0.2 -0.2 -0.4 -0.4 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 n (fm -3 ) ◮ m ∗ = E ∗ ◮ m ∗ = F = ( p 2 F + M ∗ 2 ) 1 / 2 ◮ For n large, m 1+ β ( x ) n dm ∗ dn ≃ 0 ◮ Minimum at n s.t. M ∗ + dM ∗ p F dp F = 0 C. Constantinou Thermal Properties of Dense Matter

  3. Degenerate Limit Thermodynamics ◮ Interaction switched-on adiabatically ◮ Entropy density and number density maintain their free Fermi-gas forms: 1 � s = [ f p ln f p + (1 − f p ) ln(1 − f p )] V p 1 � = f p ( T ) n V p d ε δ s ◮ � ⇒ s = 2 anT δ T a = π 2 m ∗ level density parameter p 2 2 F C. Constantinou Thermal Properties of Dense Matter

  4. Degenerate Limit Thermodynamics Rest of thermodynamics via Maxwell’s relations or other identities: ◮ Energy density d ε ds = T ε th = anT 2 dT = − n 2 d ( s / n ) ◮ Pressure dP dn P th = 2 ; Q = 1 − 3 m ∗ dm ∗ n 3 nQT 2 2 dn d µ ◮ Chemical potential dT = − ds dn 1 − 2 Q T 2 � � µ ( n , T ) = − a 3 � C V = T d ( s / n ) ◮ Specific Heats n = 2 aT � dT � � C P = T d ( s / n ) P = 2 aT � dT � C. Constantinou Thermal Properties of Dense Matter

  5. Degenerate Limit Thermodynamics Beyond Leading Order Degenerate limit implications: ◮ η = µ − ǫ ( p =0) ≫ 1 ⇒ Sommerfeld T ◮ ǫ = p 2 2 m + U ( n , p ; T ) → p 2 2 m + U ( n , p ; 0) For a general U ( n , p ), define an effective mass function � − 1 � � 1 + m ∂ U ( n , p ) � M ( n , p ) = m . � p ∂ p � n Relation to Landau m ∗ : M ( n , p = p F ) = m ∗ Applying the Sommerfeld expansion to the integral of the entropy density gives s = 2 anT − 16 5 π 2 a 3 nT 3 (1 − L F ) M ′ 2 M ′′ M ′ � L F = 7 m ∗ 2 + 7 m ∗ + 3 F ≡ ∂ M ( n , p ) 12 p 2 F 12 p 2 F F ; M ′ � 4 p F F F � m ∗ ∂ p � p = p F C. Constantinou Thermal Properties of Dense Matter

  6. Degenerate Limit Thermodynamics Beyond Leading Order ◮ Thermal Energy: E th = aT 2 + 12 5 π 2 a 3 T 4 (1 − L F ) ◮ Thermal Pressure: P th = 2 8 � � 1 − L F + n dL F 3 anQT 2 − 5 π 2 a 3 nQT 4 2 Q dn ◮ Thermal Chemical Potential: � 1 − 2 Q � T 2 + 4 � (1 − L F )(1 − 2 Q ) − ndL F � 5 π 2 a 3 T 4 µ th = − a 3 dn ◮ Specific Heat at constant volume: C V = 2 aT + 48 5 π 2 a 3 T 3 (1 − L F ) � ∂ Pth � 2 � � ◮ Specific Heat at constant pressure: C P = C V + T ∂ T � n n 2 ∂ P ∂ n | T C. Constantinou Thermal Properties of Dense Matter

  7. Results: S and E th 25 MDI(A) SkO' MFT 25 2 MDI(A) SkO' MFT 2 SNM 20 SNM 20 1.5 1.5 15 T = 20 MeV 15 1 1 10 10 0.5 5 0.5 5 T = 20 MeV E th (MeV) 0 0 0 0 S (k B ) 25 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 FLT FLT 25 2 PNM 2 FLT+NLO FLT+NLO 20 PNM 20 Exact Exact 1.5 1.5 15 15 1 10 1 10 0.5 5 0.5 5 0 0 0 0 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 n (fm -3 ) n (fm -3 ) ◮ The three models produce quantitatively similar results. ◮ Agreement with exact results extended to n ≃ 0 . 1 fm − 3 . ◮ Better agreement for PNM than for SNM. C. Constantinou Thermal Properties of Dense Matter

  8. Results: P th and µ th 0 SNM 0 4 SNM 4 -2 -2 3 3 -4 -4 2 T = 20 MeV 2 -6 T = 20 MeV -6 1 MDI(A) SkO' MFT -8 MDI(A) SkO' MFT 1 P th (MeV fm -3 ) -8 µ n,th (MeV) -10 0 -10 0 FLT 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 PNM 4 PNM 0 4 FLT+NLO -2 Exact -2 3 3 -4 -4 FLT 2 FLT+NLO 2 -6 -6 Exact 1 -8 1 -8 -10 0 -10 0 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 n (fm -3 ) n (fm -3 ) ◮ Model dependence is evident- due to dm ∗ dn . ◮ Agreement with exact results extended to n ≃ 0 . 1 fm − 3 . ◮ Better agreement for PNM than for SNM. C. Constantinou Thermal Properties of Dense Matter

  9. Results: Specific Heats 7 7 6 6 MDI(A) SkO' MFT MDI(A) SkO' MFT 1.5 5 1.5 SNM 5 SNM 4 4 1 1 3 3 2 T = 20 MeV 2 0.5 0.5 1 T = 20 MeV 1 3 0 0 C P (k B ) C V (k B ) 3 0 0 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 2.5 FLT 0 0.2 0.4 0.6 0.8 0.2 0.4 FLT 0.6 0.8 0.2 0.4 0.6 0.8 2.5 PNM PNM FLT+NLO 1.5 FLT+NLO 1.5 2 Exact 2 Exact 1.5 1 1.5 1 1 1 0.5 0.5 0.5 0.5 0 0 0 0 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 n (fm -3 ) n (fm -3 ) ◮ The MDI and MFT C V exceed the classical value of 1.5 in the nondegenerate limit. In this regime the T -dependence of the spectrum becomes important. ◮ The peaks in C P are due to the proximity to the nuclear liquid-gas phase transition. C. Constantinou Thermal Properties of Dense Matter

  10. Binary Mergers and the EOS ◮ The EOS is necessary for a complete description of the dynamics of a merger. ◮ The EOS is relevant to: ◮ GW frequency ◮ Size, type, and lifetime of remnant ◮ EOSs used in simulations: ◮ Realistic ◮ Polytropic, P = κ n Γ S ◮ Ideal Fluid, P th = (Γ th − 1) ε th C. Constantinou Thermal Properties of Dense Matter

  11. Γ th -General Considerations ◮ Γ th = 1 + P th ε th ◮ Degenerate Limit ◮ Nonrelativistic n → 0 Γ th = 1 + 2 5 π 2 a 2 nT 2 dL F 4 5 3 Q − − → dn 3 Q = 1 + 3 m ∗ dm ∗ n 2 dn ◮ Relativistic � p 4 � n →∞ Γ th = 1 + Q 15 π 2 a 2 T 2 (1 − Q ) 8 L F − 5 4 3 + − → F 3 E ∗ 4 3 F � 2 � � � M ∗ 1 − 3 n M ∗ dM ∗ Q = 1 + E ∗ dn F ◮ CC, B. Muccioli, M. Prakash & J.M. Lattimer, arXiv:1504.03982 C. Constantinou Thermal Properties of Dense Matter

  12. Γ th -SkO’ 2.2 Y p = 0.1 2 = 0.3 1.8 = 0.5 1.6 No Leptons SkO' 1.4 Deg. on top of Exact T = 50 MeV 1.2 ◮ No T dependence: 2.2 For Skyrme models, 0.0001 0.001 0.01 0.1 1 2 1.8 P th ( n , T ) = P id th ( n , T ; m ∗ ) Q 1.6 1.4 ε th ( n , T ) = ε id th ( n , T ; m ∗ ) T = 20 MeV 1.2 Γ th P id 2.2 th = 2 th 0.0001 0.001 0.01 0.1 1 2 ε id 3 1.8 Γ th = 8 3 − m ∗ 1.6 1.4 m T = 10 MeV 1.2 ◮ Weak x dependence 2.2 0.0001 0.001 0.01 0.1 1 2 1.8 1.6 ◮ Sharp rise in homogeneous phase 1.4 T = 5 MeV 1.2 0.0001 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1 n (fm -3 ) C. Constantinou Thermal Properties of Dense Matter

  13. Γ th -MDI Y p = 0.5 2 (a) Deg = 0.3 = 0.1 1.6 Exact MDI(A) ◮ Weak T dependence T = 50 MeV 1.2 0.0001 0.001 0.01 0.1 1 ◮ Weak x dependence 2 Deg 1.6 Exact ◮ Maximum around n ∼ n 0 : T = 20 MeV 1.2 Γ th d Γ th dn = 0 ⇒ 0.0001 0.001 0.01 0.1 1 2 Deg + n d 2 m ∗ dm ∗ m ∗ dm ∗ n � � 1 − dn 2 = 0 dn dn 1.6 Exact T = 10 MeV 1.2 0.0001 0.001 0.01 0.1 1 2 1.6 Exact = Deg. T = 5 MeV 1.2 0.0001 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1 C. Constantinou Thermal Properties of Dense Matter

  14. Γ th -MFT x = 0.1 (c) 2 = 0.3 Deg. = 0.5 1.6 Exact MFT T = 50 MeV ◮ Weak T dependence 1.2 0.0001 0.001 0.01 0.1 1 2 Deg. ◮ Weak x dependence 1.6 Exact T = 20 MeV 1.2 ◮ Maximum around 2 n 0 Γ th 0.0001 0.001 0.01 0.1 1 2 Exact = Deg. 1.6 T = 10 MeV 1.2 0.0001 0.001 0.01 0.1 1 2 Exact = Deg. 1.6 T = 5 MeV 1.2 0.0001 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1 C. Constantinou Thermal Properties of Dense Matter

  15. Γ th -Leptons and photons included Y e = 0.5 Y e = 0.1 Y e = 0.1 (b) 2 (a) (c) 2 2 = 0.3 = 0.3 = 0.3 Deg Deg = 0.5 Deg = 0.5 = 0.1 1.6 1.6 1.6 MDI(A) SkO' MFT Exact T = 50 MeV Exact T = 50 MeV Exact T = 50 MeV 1.2 1.2 1.2 0.0001 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1 2 2 2 Deg Deg Deg 1.6 1.6 1.6 Exact T = 20 MeV Exact T = 20 MeV Exact T = 20 MeV 1.2 1.2 1.2 Γ th th 0.0001 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1 2 2 2 Deg Deg Deg 1.6 1.6 1.6 Exact Exact Exact T = 10 MeV T = 10 MeV T = 10 MeV 1.2 1.2 1.2 0.0001 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1 2 2 2 Deg Deg Deg 1.6 1.6 1.6 Exact Exact Exact T = 5 MeV T = 5 MeV T = 5 MeV 1.2 1.2 1.2 0.0001 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1 n (fm -3 ) n → 0 ◮ Γ th → 4 − 3 ◮ Maximum even for Skyrme C. Constantinou Thermal Properties of Dense Matter

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend