the reach of thermal supersymmetric dark matter
play

The Reach of Thermal Supersymmetric Dark Matter Jason L. Evans - PowerPoint PPT Presentation

The Reach of Thermal Supersymmetric Dark Matter The Reach of Thermal Supersymmetric Dark Matter Jason L. Evans Korea Institute for Advanced Study The Reach of Thermal Supersymmetric Dark Matter Outline Motivations SUSY Dark Matter


  1. The Reach of Thermal Supersymmetric Dark Matter The Reach of Thermal Supersymmetric Dark Matter Jason L. Evans Korea Institute for Advanced Study

  2. The Reach of Thermal Supersymmetric Dark Matter Outline Motivations SUSY Dark Matter Coannihillation Gluino Coannihilation Stop Coannihilation

  3. The Reach of Thermal Supersymmetric Dark Matter Motivations Where We Are So Far ◮ SUSY is most likely somewhat tuned − ∆ BG ∼ M 2 SUSY / m 2 Z ◮ Is it time to let that ship sink? − We worry because we can detect it Selected CMS SUSY Results* - SMS Interpretation ICHEP '16 - Moriond '17 → ~ ~ ~ → χ ∼ 0 SUS-16-014 SUS-16-033 0l(MHT) pp g g , g qq → ~ ~ ~ → ∼ χ 1 0 pp g g , g qq SUS-16-015 SUS-16-036 0l(MT2) ~ ~ ~ ∼ 1 0 pp → g g , g → bb χ SUS-16-014 SUS-16-033 0l(MHT) ~ ~ ~ ∼ 0 1 pp → g g , g → bb χ SUS-16-015 SUS-16-036 0l(MT2) ~ ~ ~ ∼ 1 0 α pp → g g , g → bb χ SUS-16-016 0l( ) ~ ~ ~ ∼ 0 1 T pp → g g , g → tt χ SUS-16-014 SUS-16-033 0l(MHT) ∼ 1 pp → g ~ ~ g , g ~ → tt χ 0 SUS-16-015 SUS-16-036 0l(MT2) ~ ~ ~ ∼ 1 0 α pp → g g , g → tt χ SUS-16-016 0l( ) Gluino ∼ 1 T pp → g ~ ~ g , g ~ → tt χ 0 SUS-16-019 SUS-16-042 1l( ∆ φ ) ∼ 1 pp → ~ g ~ g , ~ g → tt χ 0 SUS-16-020 SUS-16-035 2l same-sign → ~ ~ ~ → ∼ χ 0 1 SUS-16-022 SUS-16-041 Multilepton pp g g , g tt ∼ pp → ~ g ~ g , ~ g → tt χ 0 1 SUS-16-030 0l → ~ ~ ~ → χ ∼ 0 1 SUS-16-037 1l(MJ) pp g g , g tt → ~ ~ ~ → ~ → ∼ χ 0 1 pp g g , g t t t c SUS-16-030 0l (M - M LSP = 20 GeV) → ~ ~ ~ → ∼ 1 χ ± Mother pp g g g , bt SUS-16-033 0l(MHT) (M ∼ - M LSP = 5 GeV) → ~ ~ ~ → χ ∼ ± → ∼ χ 0 1 ∆ φ χ ± pp g g g , qq qq W SUS-16-019 SUS-16-042 1l( ) x=0.5 1 ~ ~ ~ ∼ ± 1 ∼ 0 1 pp → g g g , → qq χ → qq W χ SUS-16-020 SUS-16-035 2l same-sign x=0.5 ~ ~ ~ ∼ ± 1 ∼ 1 0 pp → g g , g → qq χ → qq W χ SUS-16-020 SUS-16-035 2l same-sign (M - M = 20 GeV) ~ ~ ~ ∼ ∼ 1 ∼ 1 Interm. LSP pp → g g , g → qq( χ ± / χ 0 ) → qq (W/Z) χ 0 SUS-16-014 SUS-16-033 0l(MHT) x=0.5 ~ ~ ~ ∼ 1 ± ∼ 2 0 ∼ 0 1 pp → g g , g → qq( χ / χ ) → qq (W/Z) χ SUS-16-022 SUS-16-041 Multilepton x=0.5 1 2 1 ~ ~ ~ ∼ pp → t t , t → t χ 0 SUS-16-014 SUS-16-033 0l(MHT) ~ ~ ~ ∼ pp → t t , t → t χ 0 1 SUS-16-015 SUS-16-036 0l(MT2) ~ ~ ~ ∼ 1 pp → t t , t → t χ 0 SUS-16-016 0l( α ) ~ ~ ~ ∼ T → → χ 1 0 SUS-16-027 SUS-17-001 2l opposite-sign pp t t , t t → ~ ~ ~ → ∼ χ 0 1 SUS-16-028 SUS-16-051 1l pp t ~ t ~ , ~ t t ∼ → → χ 0 1 pp t t , t t SUS-16-029 SUS-16-049 0l → ~ ~ ~ → ∼ χ 0 1 pp t t , t t SUS-16-030 0l ~ ~ ~ ∼ 1 0 pp → t t , t → c χ SUS-16-032 0l (Max exclusion for M - M LSP < 80 GeV) ~ ~ ~ ∼ 1 0 Mother pp → t t , t → c χ SUS-16-036 0l(MT2) (Max exclusion for M - M < 80 GeV) CMS Preliminary ~ ~ ~ ∼ 0 1 Mother LSP pp → t t , t → c χ SUS-16-049 0l (Max exclusion for M - M < 80 GeV) Squark ~ ~ ~ ∼ 0 1 Mother LSP pp → t t , t → b f f χ (4-body) SUS-16-025 SUS-16-048 2l soft (Max exclusion for M - M < 80 GeV) ~ ~ ~ ∼ 1 0 Mother LSP pp → t t , t → b f f χ (4-body) SUS-16-029 SUS-16-049 0l (Max exclusion for M - M < 80 GeV) ~ ~ ~ ∼ 0 1 Mother LSP pp → t t , t → b f f χ (4-body) SUS-16-031 1l soft (Max exclusion for M - M < 80 GeV) s = 13TeV ~ ~ ~ ∼ 1 ∼ 0 Mother LSP pp → t t , t → χ ± b → b W ± χ SUS-16-028 SUS-16-051 1l x=0.5 ~ ~ ~ ∼ 1 ∼ 1 pp → t t t , → χ ± b → b W ± χ 0 SUS-16-029 SUS-16-049 0l x=0.5 ~ ~ ~ ∼ 1 ∼ 1 pp → t t , t → χ ± b → b W ± χ 0 SUS-16-036 0l(MT2) x=0.5 ~ ~ ~ ∼ ∼ -1 -1 pp → t t t , → χ 1 ± b → b W ± χ 0 1 SUS-17-001 2l opposite-sign x=0.5 L = 12.9 fb L = 35.9 fb ~ 1 ~ ~ ∼ 1 pp → b b , b → b χ 0 SUS-16-014 SUS-16-033 0l(MHT) → ~ ~ ~ → χ ∼ 1 0 SUS-16-015 SUS-16-036 0l(MT2) pp b b , b b → ~ ~ ~ → χ ∼ 1 0 α pp b b , b b SUS-16-016 0l( ) → ~ ~ ~ → ∼ χ 1 0 T pp b b , b b SUS-16-032 0l ~ ~ ~ ~ ~ ~ → ~ ~ ~ → χ ∼ 1 0 pp q q , q q SUS-16-014 SUS-16-033 0l(MHT) q + q ( u , d , c s , ) ~ ~ ~ ~ ~ ~ ~ ~ ~ ∼ 0 1 R L pp → q q , q → q χ SUS-16-015 SUS-16-036 0l(MT2) q + q ( u d , , c , s ) 1 R L ∼ 0 ∼ ± ∼ 0 ∼ 0 EWK Gauginos pp → χ χ → lll ν χ χ SUS-16-024 SUS-16-039 Multilepton (flavour democratic) x=0.5 ∼ 0 2 ∼ ± 1 ∼ 0 1 ∼ 0 1 pp → χ χ → lll ν χ χ SUS-16-039 Multilepton + 2l same-sign (flavour democratic) x=0.95 ∼ 2 ∼ 1 ∼ 1 ∼ 1 pp → χ 0 χ ± → ll ν τ χ 0 0 χ SUS-16-039 Multilepton (tau enriched) x=0.5 ∼ 0 2 ∼ 1 ± ∼ 0 1 ∼ 0 1 pp → χ χ → τ τ τ ν χ χ SUS-16-039 Multilepton (tau dominated) x=0.5 ∼ 2 ∼ 1 1 ∼ ∼ 1 pp → χ 0 χ ± → W Z χ 0 χ 0 SUS-16-024 SUS-16-039 Multilepton For decays with intermediate mass, ∼ ∼ 2 1 ∼ 1 ∼ 1 pp → χ 0 χ ± → W H χ 0 χ 0 SUS-16-039 Multilepton ⋅ ⋅ ∼ ∼ ∼ ∼ m = x m +(1-x) m → χ 0 2 χ ± 1 → χ 1 0 χ 0 1 SUS-16-025 SUS-16-048 2l soft (Max exclusion for M - M < 40 GeV) pp W Z Mother LSP Intermediate Mother LSP 2 1 1 1 0 200 400 600 800 1000 1200 1400 1600 1800 2000 *Observed limits at 95% C.L. - theory uncertainties not included Mass Scale [GeV] Only a selection of available mass limits. Probe *up to* the quoted mass limit for m ≈ 0 GeV unless stated otherwise LSP

  4. The Reach of Thermal Supersymmetric Dark Matter Motivations Unification and Thresholds ◮ Gauge couplings unify in SUSY ◮ M GUT affects on Unification − M GUT thresholds → unification ◮ Unification → upper limit on M SUSY − β ( α i ) change at M SUSY − µ, M i ≫ m W → no unification ~ ~   1  f 1 Minimal SU(5)   1 2 H    1 C 3 , 8 5 X   1 3 M M SUSY GUT

  5. The Reach of Thermal Supersymmetric Dark Matter SUSY Dark Matter SUSY Well Tempered Neutralinos ◮ WIMP miracle − Weak scale masses/interactions give correct density ◮ Netralinos: the perfect WIMP ( r = M 2 1 / m 2 e R → 0 . 25) ˜ − density only depends on scattering cross section B v � = 3 g 3 t 3 w r ( 1 + r 2 ) 3 g 4 21 g 4 � σ ˜ � σ eff ˜ H v � ≃ � σ eff ˜ W v � = 512 πµ 2 2 π m 2 e R x ( 1 + r ) 4 16 π M 2 ˜ 2 � 2 � 2 m ˜ � � M 2 Ω h 2 ≃ 0 . 12 e R H h 2 ≃ 0 . 1 W h 2 ≃ 0 . 13 µ � 2 Ω ˜ � Ω ˜ 1 TeV 100 GeV 2 . 5 TeV

  6. The Reach of Thermal Supersymmetric Dark Matter SUSY Dark Matter SUSY Well Tempered Neutralinos ◮ WIMP miracle − Weak scale masses/interactions give correct density ◮ Netralinos: the perfect WIMP ( r = M 2 1 / m 2 e R → 0 . 25) ˜ − density only depends on scattering cross section − Thermal Wino ruled out? B v � = 3 g 3 t 3 w r ( 1 + r 2 ) 3 g 4 21 g 4 � σ ˜ � σ eff ˜ H v � ≃ � σ eff ˜ W v � = 512 πµ 2 2 π m 2 e R x ( 1 + r ) 4 16 π M 2 ˜ 2 � 2 m ˜ � � 2 Ω h 2 ≃ 0 . 12 e R � H h 2 ≃ 0 . 1 µ � 2 W h 2 ≃ 0 . 13 M 2 Ω ˜ � Ω ˜ 1 TeV 2 . 5 TeV 100 GeV

  7. The Reach of Thermal Supersymmetric Dark Matter SUSY Dark Matter SUSY Well Tempered Neutralinos ◮ WIMP miracle − Weak scale masses/interactions give correct density ◮ Netralinos: the perfect WIMP ( r = M 2 1 / m 2 e R → 0 . 25) ˜ − density only depends on scattering cross section − Thermal Wino ruled out? (Cohen,Lisanti,Pierce,Slatyer) 10 10 Dark Matter Fraction 1 10 � 1 10 � 1 10 � 2 10 � 2 10 � 3 10 � 3 10 � 4 0.5 1.0 1.5 2.0 2.5 3.0 M 2 � TeV �

  8. The Reach of Thermal Supersymmetric Dark Matter SUSY Dark Matter SUSY Well Tempered Neutralinosw ◮ WIMP miracle − Weak scale masses/interactions give correct density ◮ Netralinos: the perfect WIMP ( r = M 2 1 / m 2 e R → 0 . 25) ˜ − density only depends on scattering cross section − Thermal Wino ruled out? ◮ Simple thermal relics all but gone (Badziak, Olechowski, Szczerbiak) Red: LUX(SI), Green: LUX(SD), Orange: (XENON1T), Yellow: (LZ) Ω h 2 ≈ 0 . 12 , µM 1 < 0 Ω h 2 ≈ 0 . 12 , µM 1 > 0 15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 8 7 7 6 N 2 11 =0 . 5 6 N 2 11 =0 . 5 tan β 5 XENON1T LZ tan β 5 XENON1T LZ 4 4 1 0 80% 3 2 5 3 50 120% 200 2 2 7 0 0 9 0 0 200 400 600 800 1000 200 400 600 800 1000 m LSP [GeV] m LSP [GeV]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend