the statistical signature of bosonsampling
play

The Statistical Signature of BosonSampling Mattia Walschaers, Jack - PowerPoint PPT Presentation

The Statistical Signature of BosonSampling Mattia Walschaers, Jack Kuipers, Juan-Diego Urbina, Klaus Mayer, Malte Christopher Tichy, Klaus Richter and Andreas Buchleitner Luchon, March 2015 Bosons are Remarkable Bunching 50/50 Beamsplitter


  1. The Statistical Signature of BosonSampling Mattia Walschaers, Jack Kuipers, Juan-Diego Urbina, Klaus Mayer, Malte Christopher Tichy, Klaus Richter and Andreas Buchleitner Luchon, March 2015

  2. Bosons are Remarkable Bunching 50/50 Beamsplitter

  3. BosonSampling Distinguishable 2 � � p � U Random � � o = perm ~ ~ i → ~ i, ~ o � comp U Fermions 2 y t � � i l i b a ? o = � det U p b r � � u o r c ~ ~ p c i → ~ i, ~ o o t � a t h n w e v h e t i s W i h t s e o d ~ ~ i o Bosons 2 � � p � perm U � � o = ~ ~ i → ~ i, ~ o �   U 3 , 1 U 3 , 2 U 3 , 3 U 3 , 4 U 3 , 12 U 6 , 1 U 6 , 2 U 6 , 3 U 6 , 4 U 6 , 12   Computationally Complex   U U 10 , 1 U 10 , 2 U 10 , 3 U 10 , 4 U 10 , 12 ~ o =   i, ~   U 11 , 1 U 11 , 2 U 11 , 3 U 11 , 4 U 11 , 12   U 12 , 1 U 12 , 2 U 12 , 3 U 12 , 4 U 12 , 12 Aaronson and Arkhipov, Theory of Computing 4 , 143 (2013)

  4. Certification Does the machine work? So-called 
 Let’s calculate the result! BosonSampler The reason why we like BosonSampling is also the reason why we cannot directly certify it

  5. Obtaining the Statistical Signature C ij = h ˆ n j i � h ˆ n i ih ˆ n j i n i ˆ U Calculate this quantity for all modes i and j Histogram C-dataset Bosons 1500 Distinguishable … C 12 C 13 C 14 C m-1m Fermions P H C L 1000 500 0 - 0.004 - 0.003 - 0.002 - 0.001 0.000 0.001 C = < N i N j > - < N i >< N j >

  6. Benchmarking the Statistical Signature Random Matrix Theory Averaging over the Unitary group allows to analytically estimate the first moments of the C-dataset 2 X C i,j E U ( C i,j ) m ( m − 1) i>j 2 E U ( C 2 X 2 i,j ) ≈ C i,j m ( m − 1) i>j E U ( C 3 i,j ) 2 X 3 C i,j m ( m − 1) i>j

  7. Statistical Certification 2nd and 3rd moment of C-dataset for one U 6 particles in 120 0.0 modes Normalised 3rd Moment - 0.5 - 1.0 Bosons Distinguishable - 1.5 S Fermions - 2.0 Simulated Bosons - 2.5 Analytical Predictions Numerical Mean - 3.0 - 3.5 - 1.2 - 1.1 - 1.0 - 0.9 - 0.8 - 0.7 - 0.6 CV Normalised 2nd Moment Different data points obtained by either changing the circuit or varying the input state

  8. Take Home Message Complex systems require a statistical treatment Two-point correlation functions contain a significant amount of information on many-body interference Doing statistics on all possible two-point correlation functions -“C-dataset”- allows us to certify that the sampled particles are bosons Interested? arXiv:1410.8547

  9. Extra Slide: Bosons Bunch… Idea: Bosonic quantum statistics enhances the probability of events with multiple particles per output mode . Clouding B u n c h i n g Carolan et al , Nat. Photon. 8 , 621 (2014) Tichy, J. Phys. B: At. Mol. Opt. Phys. 47 , 103001 (2014)

  10. …but they are not alone Idea: Mean-field theories have been effectively applied to mimic many-particle behaviour. “Simulated Bosons” e i θ 1 Repeat n times for e i θ 2 e i θ 3 one sampling event e i θ 4 1 Add random phase to √ n U each sampling event BUNCHING e i θ 12 & CLOUDING Single-particle state Tichy et al , PRL 113 , 020502 (2014)

  11. Extra Slide: Correlation Functions C ij = h φ | ˆ n j | φ i � h φ | ˆ n i | φ i h φ | ˆ n j | φ i n i ˆ m X | φ i = i n | Ω i U q 1 ,i 1 a ∗ i 1 . . . U q n ,i n a ∗ i 1 ,...,i n =1 input mode q 1 , . . . q n output mode i, j = 1 , . . . m n n X X C B U q k ,i U q k ,j U ⇤ q k ,i U ⇤ U q k ,i U q l ,j U ⇤ q l i U ⇤ q k ,j , ij = − q k ,j + k =1 k 6 = l =1 n n X X C F U q k ,i U q k ,j U ⇤ q k ,i U ⇤ U q k ,i U q l ,j U ⇤ q l ,i U ⇤ ij = − q k ,j − q k ,j k =1 k 6 = l =1 n X C D U q k ,i U q k ,j U ⇤ q k ,i U ⇤ ij = − q k ,j k =1 n n ✓ ◆ 1 − 1 q s ,j − 1 X X C S U q s ,i U q r ,j U ⇤ q r ,i U ⇤ U q r ,i U q s ,j U ⇤ q r ,i U ⇤ ij = q s ,j n n r,s =1 r 6 = s =1

  12. Extra Slide: RMT averaging E U ( U a 1 ,b 1 . . . U a n ,b n U ∗ α 1 , β 1 . . . U ∗ α n , β n ) n X Y V N ( σ − 1 π ) = δ ( a k − α σ ( k ) ) δ ( b k − β π ( k ) ) , k =1 σ , π ∈ S n Can be obtained recursively In practice you look them up in tables

  13. Extra Slide: Results written out 
 Fermions E U ( C F ) = n ( n − m ) m ( m 2 − 1) , = 2 n ( n + 1)( m − n )( m − n + 1) 2 � � C F m 2 ( m + 2)( m + 3) ( m 2 − 1) , E U = − 6 n ( n + 1)( n + 2)( m − n )( m − n + 1)( m − n + 2) 3 � � E U C F m 2 ( m + 1)( m + 2)( m + 3)( m + 4)( m + 5) ( m 2 − 1) ,

  14. Extra Slide: Results written out 
 Distinguishable Particles n E U ( C D ) = − (1) m ( m + 1) , m 2 n + 3 m 2 + mn − 5 m + 2 n − 2 � � = n 2 � � (2) E U C D , m 2 ( m + 2)( m + 3) ( m 2 − 1) m 2 n 2 + 9 m 2 n + 26 m 2 + 5 mn 2 + 21 mn − 62 m + 12 n 2 + 60 n − 72 � � = − n 3 � � E U C D , m 2 ( m + 2)( m + 3)( m + 4)( m + 5) ( m 2 − 1) (3)

  15. Extra Slide: Results written out 
 Bosons E U ( C B ) = n ( − m − n + 2) , (1) m ( m 2 − 1) m 2 n + m 2 + 9 mn − 11 m + n 3 − 2 n 2 + 5 n − 4 � � = 2 n 2 � � (2) E U C B , m 2 ( m + 2)( m + 3) ( m 2 − 1) ✓ m 3 n 2 + 15 m 3 n + 2 m 3 + 3 m 2 n 3 + 6 m 2 n 2 + 213 m 2 n − 222 m 2 − 3 mn 4 3 � � = − 2 n E U C B m 2 ( m + 1)( m + 2)( m + 3)( m + 4)( m + 5) ( m 2 − 1) +45 mn 3 + 32 mn 2 + 372 mn − 464 m + 3 n 5 − 6 n 4 + 45 n 3 + 78 n 2 + 168 n − 288 ◆ , m 2 ( m + 1)( m + 2)( m + 3)( m + 4)( m + 5) ( m 2 − 1) (3)

  16. Extra Slide: Results written out 
 Simulated Bosons E U ( C S ) = − n ( m + n − 2) (1) m ( m 2 − 1) , 4 mn − m − 14 n 2 + 8 n − 2 2 � � = E U C S m 2 ( m + 2)( m + 3) ( m 2 − 1) n + 2 m 2 n 3 − m 2 n 2 + 4 m 2 n − m 2 + 18 mn 3 − 25 mn 2 + 2 n 5 − 4 n 4 + 10 n 3 , m 2 ( m + 2)( m + 3) ( m 2 − 1) n (2) ✓ − 2 m 3 n 5 − 21 m 3 n 4 + 30 m 3 n 3 − 41 m 3 n 2 − 10 m 3 n + 8 m 3 − 6 m 2 n 6 − 3 m 2 n 5 3 � � = E U C S ( m − 1) m 2 ( m + 1) 2 ( m + 2)( m + 3)( m + 4)( m + 5) n 2 + − 285 m 2 n 4 + 261 m 2 n 3 + 75 m 2 n 2 − 66 m 2 n + 24 m 2 + 6 mn 7 − 90 mn 6 − 55 mn 5 ( m − 1) m 2 ( m + 1) 2 ( m + 2)( m + 3)( m + 4)( m + 5) n 2 − 360 mn 4 + 591 mn 3 + 8 mn 2 − 128 mn + 64 m + ( m − 1) m 2 ( m + 1) 2 ( m + 2)( m + 3)( m + 4)( m + 5) n 2 + − 6 n 8 + 12 n 7 − 90 n 6 − 120 n 5 − 24 n 4 + 396 n 3 − 168 n 2 − 48( n − 1) ◆ . ( m − 1) m 2 ( m + 1) 2 ( m + 2)( m + 3)( m + 4)( m + 5) n 2 (3)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend