the simulation of time dependent behaviour of cement
play

The simulation of time dependent behaviour of cement bound materials - PowerPoint PPT Presentation

Elastic Composite Non-linear Inelastic matrix Micro-cracks Damage Conclusion The simulation of time dependent behaviour of cement bound materials with a micro-mechanical model Robert Davies and Dr Anthony Jefferson BRE Institute of


  1. Elastic Composite Non-linear Inelastic matrix Micro-cracks Damage Conclusion The simulation of time dependent behaviour of cement bound materials with a micro-mechanical model Robert Davies and Dr Anthony Jefferson BRE Institute of Sustainable Engineering, Cardiff University SSCS2012 /Aix en Provence,France /May 29-June 1 2012

  2. Elastic Composite Non-linear Inelastic matrix Micro-cracks Damage Conclusion Introduction Micromechanical models: Simple mechanisms considered at micro (meso) scales which are expected to capture the macroscopic behaviour Viable alternative to phenomenological models

  3. Elastic Composite Non-linear Inelastic matrix Micro-cracks Damage Conclusion Introduction Micromechanical models: Simple mechanisms considered at micro (meso) scales which are expected to capture the macroscopic behaviour Viable alternative to phenomenological models Inelastic strain may derive from: shrinkage creep micro-cracking differential thermal expansion ageing Need to simulate inelastic behaviour in the matrix phase alone

  4. Elastic Composite Non-linear Inelastic matrix Micro-cracks Damage Conclusion Content Outline Elastic two-phase composite 1 Non-linear behaviour within the composite 2 A two-phase composite with inelastic strain in the matrix only 3 Micro-cracks in the matrix 4 Damage predictions 5 Concluding remarks 6

  5. Elastic Composite Non-linear Inelastic matrix Micro-cracks Damage Conclusion Content Outline Elastic two-phase composite 1 Non-linear behaviour within the composite 2 A two-phase composite with inelastic strain in the matrix only 3 Micro-cracks in the matrix 4 Damage predictions 5 Concluding remarks 6

  6. Elastic Composite Non-linear Inelastic matrix Micro-cracks Damage Conclusion Elastic two-phase composite Two phase composite idealisation with Spherical inclusions(Eshelby solution with modified Mori-Tanaka averaging) Penny-shaped micro-cracks(Budiansky and O‘Connell) ¯ σ = f Ω · σ Ω + f M · σ M (1) ¯ ε = f Ω · ε Ω + f M · ε M + ε a (2)

  7. Elastic Composite Non-linear Inelastic matrix Micro-cracks Damage Conclusion Elastic two-phase composite Two phase composite idealisation with Spherical inclusions(Eshelby solution with modified Mori-Tanaka averaging) Penny-shaped micro-cracks(Budiansky and O‘Connell) ¯ σ = f Ω · σ Ω + f M · σ M (1) ¯ ε = f Ω · ε Ω + f M · ε M + ε a (2) Average stress-strain relationship σ = D M Ω : ¯ ¯ ε e = D M Ω : (¯ ε − ε a ) (3) D M Ω = ( f Ω · D Ω : T Ω + f M · D M ) · ( f Ω · T Ω + f M ) − 1 , (4a) T Ω = I 2 s + S Ω : A Ω , (4b) A Ω = [( D Ω − D M ) : S Ω + D M ] − 1 : ( D Ω − D M ) (4c)

  8. Elastic Composite Non-linear Inelastic matrix Micro-cracks Damage Conclusion Content Outline Elastic two-phase composite 1 Non-linear behaviour within the composite 2 A two-phase composite with inelastic strain in the matrix only 3 Micro-cracks in the matrix 4 Damage predictions 5 Concluding remarks 6

  9. Elastic Composite Non-linear Inelastic matrix Micro-cracks Damage Conclusion Non-linear behaviour within the composite Inelastic strains in the inclusion D Ω : ( ε o + ε c + ε IN ) = D M : ( ε o + ε c + ε IN − ε τ ) (5a) ε c = S Ω : ( ε τ + ε IN ) (5b)

  10. Elastic Composite Non-linear Inelastic matrix Micro-cracks Damage Conclusion Non-linear behaviour within the composite Inelastic strains in the inclusion D Ω : ( ε o + ε c + ε IN ) = D M : ( ε o + ε c + ε IN − ε τ ) (5a) ε c = S Ω : ( ε τ + ε IN ) (5b) Inelastic strains in the matrix Secant moduli method (Weng) D Ω : ( ε o + ε c ) = D Secant : ( ε o + ε c − ε τ ) (6a) ε c = S secant : ε τ (6b) Elastic constraint method (Weng) D Ω : ( ε o + ε c + ε IN ) = D M : ( ε o + ε c + ε IN − ε τ ) (7a) ε c = S Ω : ( ε τ − ε IN ) (7b) (Nemat Nasser and Hori( 1993 ), Mura ( 1987 ) and Weng ( 1988 ))

  11. Elastic Composite Non-linear Inelastic matrix Micro-cracks Damage Conclusion Content Outline Elastic two-phase composite 1 Non-linear behaviour within the composite 2 A two-phase composite with inelastic strain in the matrix only 3 Micro-cracks in the matrix 4 Damage predictions 5 Concluding remarks 6

  12. Elastic Composite Non-linear Inelastic matrix Micro-cracks Damage Conclusion Two material problem with matrix undergoing transformation strain ε IN . Ω remains elastic. Matrix phase Inclusion phase σ M = D M : ε M = D M : ( ε o + ε c − ε IN ) σ Ω = D Ω : ε Ω = D Ω : ( ε o + ε c ) (8) (9) Consistency equation D Ω : ( ε o + ε c ) = D M : ( ε o + ε c − ε τ ) (10) Constrained strain ε c = S Ω : ( ε τ − ε IN ) (11) Transformation eigenstrain ε τ = A Ω : ( ε o − S Ω : ε IN ) (12)

  13. Elastic Composite Non-linear Inelastic matrix Micro-cracks Damage Conclusion Individual phase and composite equations σ M = D M : ε Mel = D M : ( ε M − ε IN ) (13) σ Ω = D Ω : T Ω : ( ε M − S Ω : ε IN ) (14) Substitution and rearranged total strain equation ε M = ( f Ω · T Ω + f M ) − 1 : (¯ ε + f Ω · T Ω · S Ω : ε IN ) (15) Constitutive equation σ = D M Ω : (¯ ¯ ε − ε INEQ ) (16) where ε INEQ = D M Ω − 1 · ( f Ω · D Ω · T Ω : S Ω + f M · D M − f Ω · D M Ω · T Ω : S Ω ) : ε IN (18)

  14. Elastic Composite Non-linear Inelastic matrix Micro-cracks Damage Conclusion Individual phase and composite equations σ M = D M : ε Mel = D M : ( ε M − ε IN ) (13) σ Ω = D Ω : T Ω : ( ε M − S Ω : ε IN ) (14) Substitution and rearranged total strain equation ε M = ( f Ω · T Ω + f M ) − 1 : (¯ ε + f Ω · T Ω · S Ω : ε IN ) (15) Constitutive equation σ = D M Ω : (¯ ¯ ε − ε INEQ − ε a ) (17) where ε INEQ = D M Ω − 1 · ( f Ω · D Ω · T Ω : S Ω + f M · D M − f Ω · D M Ω · T Ω : S Ω ) : ε IN (18)

  15. Elastic Composite Non-linear Inelastic matrix Micro-cracks Damage Conclusion Content Outline Elastic two-phase composite 1 Non-linear behaviour within the composite 2 A two-phase composite with inelastic strain in the matrix only 3 Micro-cracks in the matrix 4 Damage predictions 5 Concluding remarks 6

  16. Elastic Composite Non-linear Inelastic matrix Micro-cracks Damage Conclusion Penny-shaped micro-cracks in the matrix σ M = D M : ( ε M − ε IN − ε F RM ) (19) σ Ω = D Ω : ε Ω = D Ω : ( ε o + ε c ) (20) Consistency equation D Ω : ( ε o + ε c ) = (1 − ω ) D M : ( ε o + ε c − ε τ ) (21) Constrained strain ε c = S Ω : ( ε τ − ε IN ) (23)

  17. Elastic Composite Non-linear Inelastic matrix Micro-cracks Damage Conclusion Penny-shaped micro-cracks in the matrix σ M = D M : ( ε M − ε IN − ε F RM ) (19) σ Ω = D Ω : ε Ω = D Ω : ( ε o + ε c ) (20) Consistency equation D Ω : ( ε o + ε c ) = D M : ( ε o + ε c − ε τ − ε FRM Ω ) (22) Constrained strain ε c = S Ω : ( ε τ − ε IN ) (23)

  18. Elastic Composite Non-linear Inelastic matrix Micro-cracks Damage Conclusion Penny-shaped micro-cracks in the matrix σ M = D M : ( ε M − ε IN − ε F RM ) (19) σ Ω = D Ω : ε Ω = D Ω : ( ε o + ε c ) (20) Consistency equation D Ω : ( ε o + ε c ) = D M : ( ε o + ε c − ε τ − ε FRM Ω ) (22) Constrained strain ε c = S Ω : ( ε τ − ε IN ) (23) Transformation eigenstrain ε τ = A Ω : ( ε o − S Ω : ε IN ) − B Ω : ε FRM Ω (24) where B Ω = [( D Ω − D M : S Ω + D M ] − 1 · D M (25)

  19. Elastic Composite Non-linear Inelastic matrix Micro-cracks Damage Conclusion Local model of fracture strain e FRM = C LM : s M (26a) s M = N · σ M (26b) e FRM = C LM : N · σ M (26c) � N T · e FRM · ds ε FRM = (26d) ε F RM = ( I 2 s + C add ) − 1 · C add : D M : ( ε M − ε IN ) (27a) ε F RM Ω = ( I 2 s + C add : D M : V Ω ) − 1 · C add : D M : U Ω : ( ε M − S Ω : ε IN ) (27b) where C add = 1 ω ( θ, ψ ) � � N ε : C LM : N · 1 − ω ( θ, ψ ) sin ( ψ )d ψ d θ (28a) 2 π π 2 π 2 U Ω = I 2 s + ( S Ω − I 2 s ) : A Ω , (28b) V Ω = I 2 s + ( S Ω − I 2 s ) : B Ω (28c)

  20. Elastic Composite Non-linear Inelastic matrix Micro-cracks Damage Conclusion Inelastic strain and micro-cracks in the matrix Constitutive equation σ = D M Ω FR : (¯ ¯ ε − ε INFREQ ) (29) where D M Ω F R = F : H (30a) − 1 : G ) − J ] : ε IN ε INF REQ = [( D M Ω F R (30b) F = f Ω · D M U Ω − f Ω · D M : V Ω · ( I 2 s + C add : D M : V Ω ) − 1 · C add : D M : U Ω + f M · D M − f M · D M C add · ( I 2 s + C add : D M ) − 1 · D M (30c) H = [ f Ω · D − 1 : D M : U Ω + f M · I 2 s Ω : D M : V Ω · ( I 2 s + C add : D M : V Ω ) − 1 · C add : D M : U Ω ] − 1 − f Ω · D − 1 (30d) Ω G = f Ω · D M U Ω : S Ω − f Ω · D M : V Ω · ( I 2 s + C add : D M : V Ω ) − 1 · C add : D M : U Ω : S Ω + f M · D M − f M · D M C add · ( I 2 s + C add : D M ) − 1 · D M (30e) J = [ f Ω · D − 1 : D M : U Ω − f Ω · D − 1 : Ω Ω D M : V Ω · ( I 2 s + C add : D M : V Ω ) − 1 · C add : D M : U Ω ] : S Ω (30f) (30g)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend