standard cad t ool based method for simulation of laser
play

Standard CAD T ool-Based Method for Simulation of Laser-Induced - PowerPoint PPT Presentation

ISPD'18 March 28, 2018 Standard CAD T ool-Based Method for Simulation of Laser-Induced Faults in Large-Scale Circuits Raphael Viera - raphael@ieee.org Philippe Maurine, Jean-Max Dutertre and Rodrigo Bastos ISPD'18 March 28, 2018 Standard


  1. 3 - Proposed model 3.1 - Upgraded electrical model Classical Model Upgraded Electrical Model Power grid model I Ph I Ph >> '1' >> '1' '1' '0' '1' '0' I P psub_nwel C Load C Load Power grid model (>10) J.M. Dutertre et al., “Improving the ability of Bulk Built-In Current Sensors to detect Single Event E ff ects by using triple-well CMOS 13

  2. 3 - Proposed model 3.1 - Upgraded electrical model Upgraded Electrical Model Power grid model PU I Ph 'X' 'Y' I P psub_nwel C Load I Ph PD Power grid model (>10) 13

  3. 3 - Proposed model 3.1 - Upgraded electrical model Upgraded Electrical Model Power grid model Main issue: dimensioning the RC network! PU I Ph 'X' 'Y' 1V 1V I P psub_nwel C Load I Ph PD Power grid model (>10) 13

  4. Outline 1 Motivation 2 Classical model of laser fault injection and its limits 3 Proposed model 4 Simulation methodology 5 Simulation results 6 Conclusions

  5. Outline 1 Motivation 2 Classical model of laser fault injection and its limits 3 Proposed model 4 Simulation methodology 5 Simulation results 6 Conclusions

  6. 4 - Simulation methodology De fi ne simulation parameters 1 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog Set the (x,y) spatial location of the laser spot 3 De fi ne the amplitude of I Ppsub_nwell current 4 for each cell in the design according to Eq. 1 Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit Replace the nominal supply voltage 6 from the original netlist Add IPh current to each cell in the circuit 7 Perform electrical simulation 8 for a laser spot location (x,y) END 14

  7. 4 - Simulation methodology De fi ne simulation parameters 1 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog Set the (x,y) spatial location of the laser spot 3 De fi ne the amplitude of I Ppsub_nwell current 4 for each cell in the design according to Eq. 1 Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit Replace the nominal supply voltage 6 from the original netlist Add IPh current to each cell in the circuit 7 Perform electrical simulation 8 for a laser spot location (x,y) END 14

  8. 4 - Simulation methodology De fi ne simulation parameters 1 Laser beam diameter - Laser shot power Beam intensity (%) 100 5µm 80 60 40 20 0 7.5 5 7.5 2.5 5 0 2.5 0 2.5 2.5 5 5 7.5 7.5 Distance ( µ m) Distance ( µ m) 14

  9. 4 - Simulation methodology De fi ne simulation parameters 1 Laser beam diameter - Laser shot power Laser shot duration I transient (µA) Beam intensity (%) 100 5µm Rise 80 time Fall time 60 40 Peak value defined by (1) = I Ph_peak 20 0 7.5 5 7.5 2.5 5 0 2.5 0 2.5 t (ps) 2.5 5 5 7.5 0 7.5 Distance ( µ m) Distance ( µ m) 14

  10. 4 - Simulation methodology De fi ne simulation parameters 1 Laser beam diameter - Laser shot power Laser shot duration I transient (µA) Beam intensity (%) 100 5µm Rise 80 time Fall time 60 40 Peak value defined by (1) = I Ph_peak 20 0 7.5 5 7.5 2.5 5 0 2.5 0 2.5 t (ps) 2.5 5 5 7.5 0 7.5 Distance ( µ m) Distance ( µ m) Time at which the laser shot occurs w.r.t. the zero of the simulation 1 Volts CLK 0.5 0 I peak µA 0 0 0.5 1 1.5 2 2.5 3 Time (ns) 14

  11. 4 - Simulation methodology De fi ne simulation parameters 1 Laser beam diameter - Laser shot power Laser shot duration I transient (µA) Beam intensity (%) 100 5µm Rise 80 time Fall time 60 40 Peak value defined by (1) = I Ph_peak 20 0 7.5 5 7.5 2.5 5 0 2.5 0 2.5 t (ps) 2.5 5 5 7.5 0 7.5 Distance ( µ m) Distance ( µ m) Time at which the laser shot occurs w.r.t. the zero of the simulation 1 Volts CLK 0.5 0 I peak µA 0 0 0.5 1 1.5 2 2.5 3 Time (ns) (X, Y ) displacement step of the laser spot when one aims to draw a fault sensitivity map 70 Y axis (µm) 5µm 5µm 0 0 110 X axis (µm) 14

  12. 4 - Simulation methodology De fi ne simulation parameters 1 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog Set the (x,y) spatial location of the laser spot 3 De fi ne the amplitude of I Ppsub_nwell current 4 for each cell in the design according to Eq. 1 Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit Replace the nominal supply voltage 6 from the original netlist Add IPh current to each cell in the circuit 7 Perform electrical simulation 8 for a laser spot location (x,y) END 15

  13. 4 - Simulation methodology Cadence Voltus 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog ARM 7 - 5.21 k instances 15

  14. 4 - Simulation methodology Cadence Voltus 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog DFF ARM 7 - 5.21 k instances 15

  15. 4 - Simulation methodology Cadence Voltus 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog DFF 1V 1V ARM 7 - 5.21 k instances 15

  16. 4 - Simulation methodology De fi ne simulation parameters 1 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog Set the (x,y) spatial location of the laser spot 3 De fi ne the amplitude of I Ppsub_nwell current 4 for each cell in the design according to Eq. 1 Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit Replace the nominal supply voltage 6 from the original netlist Add IPh current to each cell in the circuit 7 Perform electrical simulation 8 for a laser spot location (x,y) END 16

  17. 4 - Simulation methodology Set the (x,y) spatial location of the laser spot 3 70 Beam intensity (%) Y axis (µm) 100 80 60 40 20 0 7.5 5 7.5 2.5 5 0 2.5 0 2.5 0 2.5 5 5 7.5 0 110 7.5 Distance ( µ m) Distance ( µ m) X axis (µm) 16

  18. 4 - Simulation methodology De fi ne simulation parameters 1 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog Set the (x,y) spatial location of the laser spot 3 De fi ne the amplitude of I Ppsub_nwell current 4 for each cell in the design according to Eq. 1 Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit Replace the nominal supply voltage 6 from the original netlist Add IPh current to each cell in the circuit 7 Perform electrical simulation 8 for a laser spot location (x,y) END 17

  19. 4 - Simulation methodology Power grid model PU I Ph De fi ne the amplitude of I Ppsub_nwell current 'X' 'Y' 4 I P psub_nwel for each cell in the design according to Eq. 1 I Ph C Load PD Power grid model Beam intensity (%) 100 80 60 40 20 0 7.5 5 7.5 2.5 5 0 2.5 2.5 0 2.5 5 5 7.5 7.5 Distance ( µ m) Distance ( µ m) 100% 85% 20% 5 μ m 5 μ m 1.2 μ m 17

  20. 4 - Simulation methodology Power grid model PU I Ph De fi ne the amplitude of I Ppsub_nwell current 'X' 'Y' 4 I P psub_nwel for each cell in the design according to Eq. 1 I Ph C Load PD Power grid model Beam intensity (%) 100 80 60 40 20 0 7.5 5 7.5 2.5 5 0 2.5 2.5 0 2.5 5 5 7.5 7.5 Distance ( µ m) Distance ( µ m) Z A 100% 85% 20% 5 μ m 5 μ m 1.2 μ m 17

  21. 4 - Simulation methodology Power grid model PU I Ph De fi ne the amplitude of I Ppsub_nwell current 'X' 'Y' 4 I P psub_nwel for each cell in the design according to Eq. 1 I Ph C Load PD Power grid model Beam intensity (%) 100 80 0.5 μ m 60 40 20 0 7.5 Nwell area: 0.30 μ m 2 Nwell 0.6 μ m 5 7.5 2.5 5 0 2.5 2.5 0 2.5 5 5 7.5 7.5 Distance ( µ m) Distance ( µ m) Z A 100% 85% 20% 5 μ m 5 μ m 1.2 μ m 17

  22. 4 - Simulation methodology Power grid model PU I Ph De fi ne the amplitude of I Ppsub_nwell current 'X' 'Y' 4 I P psub_nwel for each cell in the design according to Eq. 1 I Ph C Load PD Power grid model Beam intensity (%) 100 80 0.5 μ m 60 40 20 0 7.5 Nwell area: 0.30 μ m 2 Nwell 0.6 μ m 5 7.5 2.5 5 0 2.5 2.5 0 2.5 5 5 7.5 7.5 Distance ( µ m) Distance ( µ m) Z A 100% Drain NMOS Drain area: 0.03 μ m 2 85% 0.3 μ m 20% 0.1 μ m 5 μ m 5 μ m 1.2 μ m 17

  23. 4 - Simulation methodology Power grid model PU I Ph De fi ne the amplitude of I Ppsub_nwell current 'X' 'Y' 4 I P psub_nwel for each cell in the design according to Eq. 1 I Ph C Load PD Power grid model Beam intensity (%) 100 80 0.5 μ m 60 40 20 0 7.5 Nwell area: 0.30 μ m 2 Nwell 0.6 μ m 5 7.5 2.5 5 0 2.5 2.5 0 2.5 5 5 7.5 7.5 Distance ( µ m) Distance ( µ m) Z A 100% Drain NMOS Drain area: 0.03 μ m 2 85% 0.3 μ m 20% 0.1 μ m 5 μ m 5 μ m 0.30 μ m 2 1.2 μ m 10.00 0.03 μ m 2 17

  24. 4 - Simulation methodology Power grid model PU I Ph De fi ne the amplitude of I Ppsub_nwell current 'X' 'Y' 4 I P psub_nwel for each cell in the design according to Eq. 1 I Ph C Load PD Power grid model Beam intensity (%) 100 80 0.5 μ m 60 40 20 0 7.5 Nwell area: 0.30 μ m 2 Nwell 0.6 μ m 5 7.5 2.5 5 0 2.5 2.5 0 2.5 5 5 7.5 7.5 Distance ( µ m) Distance ( µ m) Z A 100% Drain NMOS Drain area: 0.03 μ m 2 85% 0.3 μ m 20% 0.1 μ m 5 μ m 5 μ m I transient (µA) 0.30 μ m 2 1.2 μ m 10.00 0.03 μ m 2 t (ps) 0 create_current_region -current {1.500ns 0.000mA 1.505ns 0.820mA 1.510ns 1.000mA 1.515ns 0.950mA ... 1.800ns 0.000mA} -layer M2 -intrinsic_cap C -loading_cap C -region "1.50 1.50 1.75 1.75" 17

  25. 4 - Simulation methodology De fi ne simulation parameters 1 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog Set the (x,y) spatial location of the laser spot 3 De fi ne the amplitude of I Ppsub_nwell current 4 for each cell in the design according to Eq. 1 Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit Replace the nominal supply voltage 6 from the original netlist Add IPh current to each cell in the circuit 7 Perform electrical simulation 8 for a laser spot location (x,y) END 18

  26. 4 - Simulation methodology Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit 70 Y axis (µm) Beam intensity (%) 100 0 80 0 110 60 X axis (µm) 40 20 0 7.5 5 7.5 2.5 5 0 2.5 2.5 0 2.5 5 5 7.5 7.5 Distance ( µ m) Distance ( µ m) 1 1 0.9 0.9 0.8 0.8 VDD and GND (V) Spot pos. 130 0.7 0.7 0.6 0.6 Voltage Swing 0.5 0.5 Voltage swing = 554 mV U205: 0.554 V 0.4 0.4 0.3 0.3 U1942: 0.554 V 0.2 0.2 U1088: 0.555 V 0.1 0.1 0 0 1 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3 Time (ns) 18

  27. 4 - Simulation methodology Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit 70 70 Y axis (µm) Y axis (µm) Beam intensity (%) 100 0 0 80 0 110 0 110 60 X axis (µm) X axis (µm) 40 20 0 7.5 5 7.5 2.5 5 0 2.5 2.5 0 2.5 5 5 7.5 7.5 Distance ( µ m) Distance ( µ m) 1 1 0.9 0.9 0.8 0.8 VDD and GND (V) Spot pos. 130 Spot pos. 132 0.7 0.7 0.6 0.6 Voltage Swing Voltage Swing 0.5 0.5 Voltage swing = 554 mV U205: 0.554 V U205: 0.670 V 0.4 0.4 0.3 0.3 U1942: 0.554 V U1942: 0.677 V 0.2 0.2 U1088: 0.555 V U1088: 0.669 V 0.1 0.1 0 0 1 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3 Time (ns) 18

  28. 4 - Simulation methodology Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit 70 70 70 Y axis (µm) Y axis (µm) Y axis (µm) Beam intensity (%) 100 0 0 0 80 0 110 0 110 0 110 60 X axis (µm) X axis (µm) X axis (µm) 40 20 0 7.5 5 7.5 2.5 5 0 2.5 2.5 0 2.5 5 5 7.5 7.5 Distance ( µ m) Distance ( µ m) 1 1 0.9 0.9 0.8 0.8 VDD and GND (V) Spot pos. 130 Spot pos. 132 Spot pos. 139 0.7 0.7 0.6 0.6 Voltage Swing Voltage Swing Voltage Swing 0.5 0.5 Voltage swing = 554 mV U205: 0.554 V U205: 0.670 V U205: 0.815 V 0.4 0.4 0.3 0.3 U1942: 0.554 V U1942: 0.677 V U1942: 0.818 V 0.2 0.2 U1088: 0.555 V U1088: 0.669 V U1088: 0.814 V 0.1 0.1 0 0 1 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3 Time (ns) 18

  29. 4 - Simulation methodology De fi ne simulation parameters 1 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog Set the (x,y) spatial location of the laser spot 3 De fi ne the amplitude of I Ppsub_nwell current 4 for each cell in the design according to Eq. 1 Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit Replace the nominal supply voltage 6 from the original netlist Add IPh current to each cell in the circuit 7 Perform electrical simulation 8 for a laser spot location (x,y) END 19

  30. 4 - Simulation methodology Replace the nominal supply voltage 6 from the original netlist instance input output pwell nwell std cell U527 (net21866 n134 gnd! gnd! vdd! vdd!) STD_CELL_IVX8 (original) 19

  31. 4 - Simulation methodology Replace the nominal supply voltage 6 from the original netlist instance input output pwell nwell std cell U527 (net21866 n134 gnd! gnd! vdd! vdd!) STD_CELL_IVX8 (original) U527 (net21866 n134 GND_U527 GND_U527 VDD_U527 VDD_U527) STD_CELL_IVX8 1 1 Power-grid Model 0.9 0.9 0.8 0.8 VDD and GND (V) 0.7 0.7 0.6 0.6 >> '1' '1' '0' Voltage swing = 554 mV 0.5 0.5 I P psub_nwel 0.4 0.4 0.3 0.3 C Load 0.2 0.2 0.1 0.1 0 0 Power-grid Model 1 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3 Time (ns) 19

  32. 4 - Simulation methodology Replace the nominal supply voltage 6 from the original netlist instance input output pwell nwell std cell U527 (net21866 n134 gnd! gnd! vdd! vdd!) STD_CELL_IVX8 (original) U527 (net21866 n134 GND_U527 GND_U527 VDD_U527 VDD_U527) STD_CELL_IVX8 VU527_VDD (vdd! VDD_U527) vsource type=pwl val0=0 wave=[ 1.5n 1 ... 1.65 0.78 ... tn vn ] 1 1 Power-grid Model 0.9 0.9 0.8 0.8 VDD and GND (V) 0.7 0.7 0.6 0.6 >> '1' '1' '0' Voltage swing = 554 mV 0.5 0.5 I P psub_nwel 0.4 0.4 0.3 0.3 C Load 0.2 0.2 0.1 0.1 0 0 Power-grid Model 1 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3 Time (ns) 19

  33. 4 - Simulation methodology Replace the nominal supply voltage 6 from the original netlist instance input output pwell nwell std cell U527 (net21866 n134 gnd! gnd! vdd! vdd!) STD_CELL_IVX8 (original) U527 (net21866 n134 GND_U527 GND_U527 VDD_U527 VDD_U527) STD_CELL_IVX8 VU527_VDD (vdd! VDD_U527) vsource type=pwl val0=0 wave=[ 1.5n 1 ... 1.65 0.78 ... tn vn ] VU527_GND (GND_U527 gnd!) vsource type=pwl val0=0 wave=[ 1.5n 0 ... 1.68 0.23 ... tn vn ] 1 1 Power-grid Model 0.9 0.9 0.8 0.8 VDD and GND (V) 0.7 0.7 0.6 0.6 >> '1' '1' '0' Voltage swing = 554 mV 0.5 0.5 I P psub_nwel 0.4 0.4 0.3 0.3 C Load 0.2 0.2 0.1 0.1 0 0 Power-grid Model 1 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3 Time (ns) 19

  34. 4 - Simulation methodology De fi ne simulation parameters 1 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog Set the (x,y) spatial location of the laser spot 3 De fi ne the amplitude of I Ppsub_nwell current 4 for each cell in the design according to Eq. 1 Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit Replace the nominal supply voltage 6 from the original netlist Add IPh current to each cell in the circuit 7 Perform electrical simulation 8 for a laser spot location (x,y) END 20

  35. 4 - Simulation methodology Add IPh current to each cell in the circuit 7 U527 (net21866 n134 gnd! gnd! vdd! vdd!) STD_CELL_IVX8 U527 (net21866 n134 GND_U527 GND_U527 VDD_U527 VDD_U527) STD_CELL_IVX8 VU527_VDD (vdd! VDD_U527) vsource type=pwl val0=0 wave=[ 1.5n 1 ... 1.65 0.78 ... tn vn ] VU527_GND (GND_U527 gnd!) vsource type=pwl val0=0 wave=[ 1.5n 0 ... 1.68 0.23 ... tn vn ] Power-grid Model >> '1' '1' '0' I P psub_nwel C Load Power-grid Model 20

  36. 4 - Simulation methodology Add IPh current to each cell in the circuit 7 U527 (net21866 n134 gnd! gnd! vdd! vdd!) STD_CELL_IVX8 U527 (net21866 n134 GND_U527 GND_U527 VDD_U527 VDD_U527) STD_CELL_IVX8 VU527_VDD (vdd! VDD_U527) vsource type=pwl val0=0 wave=[ 1.5n 1 ... 1.65 0.78 ... tn vn ] VU527_GND (GND_U527 gnd!) vsource type=pwl val0=0 wave=[ 1.5n 0 ... 1.68 0.23 ... tn vn ] IU527_VDD (VDD_U527 n134) isource dc=0 type=exp val0=0 td1=fstart Power-grid Model 1 Volts CLK I Ph 0.5 0 >> '1' '1' '0' I peak I P psub_nwel µA 0 C Load 0 0.5 1 1.5 2 2.5 3 Time (ns) Power-grid Model 20

  37. 4 - Simulation methodology Add IPh current to each cell in the circuit 7 U527 (net21866 n134 gnd! gnd! vdd! vdd!) STD_CELL_IVX8 U527 (net21866 n134 GND_U527 GND_U527 VDD_U527 VDD_U527) STD_CELL_IVX8 VU527_VDD (vdd! VDD_U527) vsource type=pwl val0=0 wave=[ 1.5n 1 ... 1.65 0.78 ... tn vn ] VU527_GND (GND_U527 gnd!) vsource type=pwl val0=0 wave=[ 1.5n 0 ... 1.68 0.23 ... tn vn ] IU527_VDD (VDD_U527 n134) isource dc=0 type=exp val0=0 td1=fstart tau1=rise_time Power-grid Model 1 Volts CLK I Ph 0.5 0 >> '1' '1' '0' I peak I P psub_nwel µA 0 C Load 0 0.5 1 1.5 2 2.5 3 Time (ns) Power-grid Model 20

  38. 4 - Simulation methodology Add IPh current to each cell in the circuit 7 U527 (net21866 n134 gnd! gnd! vdd! vdd!) STD_CELL_IVX8 U527 (net21866 n134 GND_U527 GND_U527 VDD_U527 VDD_U527) STD_CELL_IVX8 VU527_VDD (vdd! VDD_U527) vsource type=pwl val0=0 wave=[ 1.5n 1 ... 1.65 0.78 ... tn vn ] VU527_GND (GND_U527 gnd!) vsource type=pwl val0=0 wave=[ 1.5n 0 ... 1.68 0.23 ... tn vn ] IU527_VDD (VDD_U527 n134) isource dc=0 type=exp val0=0 td1=fstart tau1=rise_time val1=154.69u Power-grid Model 1 Volts CLK I Ph 0.5 0 >> '1' '1' '0' I peak I P psub_nwel µA 0 C Load 0 0.5 1 1.5 2 2.5 3 Time (ns) Power-grid Model 20

  39. 4 - Simulation methodology Add IPh current to each cell in the circuit 7 U527 (net21866 n134 gnd! gnd! vdd! vdd!) STD_CELL_IVX8 U527 (net21866 n134 GND_U527 GND_U527 VDD_U527 VDD_U527) STD_CELL_IVX8 VU527_VDD (vdd! VDD_U527) vsource type=pwl val0=0 wave=[ 1.5n 1 ... 1.65 0.78 ... tn vn ] VU527_GND (GND_U527 gnd!) vsource type=pwl val0=0 wave=[ 1.5n 0 ... 1.68 0.23 ... tn vn ] IU527_VDD (VDD_U527 n134) isource dc=0 type=exp val0=0 td1=fstart tau1=rise_time val1=154.69u td2=fall_start Power-grid Model 1 Volts CLK I Ph 0.5 0 >> '1' '1' '0' I peak I P psub_nwel µA 0 C Load 0 0.5 1 1.5 2 2.5 3 Time (ns) Power-grid Model 20

  40. 4 - Simulation methodology Add IPh current to each cell in the circuit 7 U527 (net21866 n134 gnd! gnd! vdd! vdd!) STD_CELL_IVX8 U527 (net21866 n134 GND_U527 GND_U527 VDD_U527 VDD_U527) STD_CELL_IVX8 VU527_VDD (vdd! VDD_U527) vsource type=pwl val0=0 wave=[ 1.5n 1 ... 1.65 0.78 ... tn vn ] VU527_GND (GND_U527 gnd!) vsource type=pwl val0=0 wave=[ 1.5n 0 ... 1.68 0.23 ... tn vn ] IU527_VDD (VDD_U527 n134) isource dc=0 type=exp val0=0 td1=fstart tau1=rise_time val1=154.69u td2=fall_start tau2=fall_time Power-grid Model 1 Volts CLK I Ph 0.5 0 >> '1' '1' '0' I peak I P psub_nwel µA 0 C Load 0 0.5 1 1.5 2 2.5 3 Time (ns) Power-grid Model 20

  41. 4 - Simulation methodology De fi ne simulation parameters 1 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog Set the (x,y) spatial location of the laser spot 3 De fi ne the amplitude of I Ppsub_nwell current 4 for each cell in the design according to Eq. 1 Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit Replace the nominal supply voltage 6 from the original netlist Add IPh current to each cell in the circuit 7 Perform an electrical simulation 8 for a laser spot location (x,y) END 21

  42. 4 - Simulation methodology Perform an electrical simulation 8 for a laser spot location (x,y) 70 60 50 40 μ m 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110 μ m 21

  43. 4 - Simulation methodology Perform an electrical simulation 8 for a laser spot location (x,y) 70 60 50 5 μ m 40 μ m 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110 μ m 21

  44. 4 - Simulation methodology Perform an electrical simulation 8 for a laser spot location (x,y) Power grid model Power grid model Power grid model PU I Ph PU I Ph PU I Ph ... ... 'X' 'Y' 'X' 'Y' 'X' 'Y' I P psub_nwel I P psub_nwel I P psub_nwel I Ph C Load I Ph C Load I Ph C Load PD PD PD Power grid model Power grid model Power grid model ... ... 70 70 Power grid model Power grid model 60 60 50 50 PU PU I Ph I Ph 5 μ m 5 μ m 40 40 'X' 'Y' 'X' 'Y' I P psub_nwel μ m μ m I P psub_nwel 30 30 I Ph C Load I Ph C Load PD PD 20 20 Power grid model Power grid model 10 10 0 0 0 0 10 10 20 20 30 30 40 40 50 50 60 60 70 70 80 80 90 100 110 90 100 110 μ m μ m ... ... Power grid model Power grid model Power grid model PU PU PU ... I Ph ... I Ph I Ph 'X' 'Y' 'X' 'Y' 'X' 'Y' I P psub_nwel I P psub_nwel I P psub_nwel C Load C Load I Ph C Load I Ph I Ph PD PD PD Power grid model Power grid model Power grid model 21

  45. 4 - Simulation methodology Perform an electrical simulation 8 for a laser spot location (x,y) option( ?categ 'turboOpts Power grid model Power grid model Power grid model 'numThreads ncpus_active PU I Ph PU I Ph PU I Ph ... ... 'mtOption "Manual" 'X' 'Y' 'X' 'Y' 'X' 'Y' I P psub_nwel I P psub_nwel I P psub_nwel 'apsplus t I Ph C Load I Ph C Load I Ph C Load PD PD PD 'digitalInstValue digital_inst_list Power grid model Power grid model Power grid model 'uniMode "XPS MS" ... ... ) 70 70 Hybrid simulation Power grid model Power grid model 60 60 50 50 PU PU I Ph I Ph 5 μ m 5 μ m 40 40 'X' 'Y' 'X' 'Y' I P psub_nwel μ m μ m I P psub_nwel 30 30 I Ph C Load I Ph C Load PD PD 20 20 Power grid model Power grid model 10 10 0 0 0 0 10 10 20 20 30 30 40 40 50 50 60 60 70 70 80 80 90 100 110 90 100 110 μ m μ m ... ... Power grid model Power grid model Power grid model PU PU PU ... I Ph ... I Ph I Ph 'X' 'Y' 'X' 'Y' 'X' 'Y' I P psub_nwel I P psub_nwel I P psub_nwel C Load C Load I Ph C Load I Ph I Ph PD PD PD Power grid model Power grid model Power grid model 21

  46. 4 - Simulation methodology Perform an electrical simulation 8 for a laser spot location (x,y) option( ?categ 'turboOpts Power grid model Power grid model Power grid model 'numThreads ncpus_active PU I Ph PU I Ph PU I Ph ... ... 'mtOption "Manual" 'X' 'Y' 'X' 'Y' 'X' 'Y' I P psub_nwel I P psub_nwel I P psub_nwel 'apsplus t I Ph C Load I Ph C Load I Ph C Load PD PD PD 'digitalInstValue digital_inst_list Power grid model Power grid model Power grid model 'uniMode "XPS MS" ... ... ) 70 70 Hybrid simulation Power grid model Power grid model 60 60 50 50 PU PU I Ph I Ph 5 μ m 5 μ m 40 40 'X' 'Y' 'X' 'Y' I P psub_nwel μ m μ m I P psub_nwel 30 30 I Ph C Load I Ph C Load PD PD 20 20 Number of instances simulated with the logic abstraction level Power grid model Power grid model 10 10 for different threshold voltages and different spot locations. 0 0 0 0 10 10 20 20 30 30 40 40 50 50 60 60 70 70 80 80 90 100 110 90 100 110 μ m μ m ... ... Threshold No. of cells No. of cells Power grid model Power grid model Power grid model ( IR drop + bounce) (spot loc.130) (spot loc.133) PU PU PU ... I Ph ... I Ph I Ph 5% 1676 1646 'X' 'Y' 'X' 'Y' 'X' 'Y' I P psub_nwel I P psub_nwel I P psub_nwel C Load C Load I Ph C Load I Ph I Ph PD PD PD 10% 4744 4866 Power grid model Power grid model Power grid model 15% 4878 5033 No. of instances: 5.21k 21

  47. 4 - Simulation methodology De fi ne simulation parameters 1 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog Set the (x,y) spatial location of the laser spot 3 De fi ne the amplitude of I Ppsub_nwell current 4 for each cell in the design according to Eq. 1 Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit Replace the nominal supply voltage 6 from the original netlist Add IPh current to each cell in the circuit 7 Perform electrical simulation 8 for a laser spot location (x,y) END 22

  48. 4 - Simulation methodology De fi ne simulation parameters 1 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog Set the (x,y) spatial location of the laser spot 3 De fi ne the amplitude of I Ppsub_nwell current 4 for each cell in the design according to Eq. 1 Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit Back to Step 3 Replace the nominal supply voltage 6 from the original netlist Add IPh current to each cell in the circuit 7 Perform electrical simulation 8 for a laser spot location (x,y) END 22

  49. Outline 1 Motivation 2 Classical model of laser fault injection and its limits 3 Proposed model 4 Simulation methodology 5 Simulation results 6 Conclusions

  50. Outline 1 Motivation 2 Classical model of laser fault injection and its limits 3 Proposed model 4 Simulation methodology 5 Simulation results 6 Conclusions

  51. 5 - Simulation Results 5.1 - Case study ARM 7 processor CMOS 28 nm VDD = 1 V 110 μ m x 70 μ m Laser spot diameter = 5 μ m 23

  52. 5 - Simulation Results 5.2 - Maximum Voltage Drop Without laser illumination mV 70 50 60 50 40 μ m 30 20 10 0 0 0 20 40 60 80 100 μ m 24

  53. 5 - Simulation Results 5.2 - Maximum Voltage Drop Without laser illumination With laser illumination mV mV 70 70 50 446 60 60 50 50 40 40 μ m μ m 30 30 20 20 10 10 0 0 0 0 0 20 40 60 80 100 0 20 40 60 80 100 μ m μ m 1 1 VDD and GND (V) 0.9 0.9 Without laser spot Without laser spot 0.8 0.8 5µm laser spot 0.7 0.7 0.6 0.6 Voltage swing = 554 mV 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 1 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3 Time (ns) 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend