solving differential equations
play

Solving Differential Equations Sanzheng Qiao Department of - PowerPoint PPT Presentation

IVP Software Summary Solving Differential Equations Sanzheng Qiao Department of Computing and Software McMaster University August, 2012 IVP Software Summary Outline Initial Value Problem 1 Eulers Method Runge-Kutta Methods


  1. IVP Software Summary Solving Differential Equations Sanzheng Qiao Department of Computing and Software McMaster University August, 2012

  2. IVP Software Summary Outline Initial Value Problem 1 Euler’s Method Runge-Kutta Methods Multistep Methods Implicit Methods Hybrid Method Software Packages 2

  3. IVP Software Summary Outline Initial Value Problem 1 Euler’s Method Runge-Kutta Methods Multistep Methods Implicit Methods Hybrid Method Software Packages 2

  4. IVP Software Summary Problem setting Initial Value Problem (first order) find y ( t ) such that y ′ = f ( y , t ) initial value y ( t 0 ) , usually assume t 0 = 0

  5. IVP Software Summary Problem setting Initial Value Problem (first order) find y ( t ) such that y ′ = f ( y , t ) initial value y ( t 0 ) , usually assume t 0 = 0 Generalization 1: system of first order ODEs: y is a vector and f a vector function. Example � y ′ 1 = f 1 ( y 1 , y 2 , t ) y ′ 2 = f 2 ( y 1 , y 2 , t ) or in vector notations: y ′ = f ( y , t )

  6. IVP Software Summary Problem setting (cont.) Generalization 2: high order equation u ′′ = g ( u , u ′ , t ) . Let y 1 u = y 2 u ′ = and transform the above into the following system of first order � y ′ ODEs: 1 = y 2 y ′ 2 = g ( y 1 , y 2 , t )

  7. IVP Software Summary Solution family A differential equation has a family of solutions, each corresponds to an initial value. 3.5 3 2.5 2 1.5 1 0.5 0 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 y ′ = − y , solution family y = Ce − t .

  8. IVP Software Summary Euler’s method We consider the initial value problem: y ′ = f ( y , t ) , y ( t 0 ) = y 0 Numerical solution: find approximations y n ≈ y ( t n ) , n = 1 , 2 , ... for Note: y 0 = y ( t 0 ) (initial value)

  9. IVP Software Summary Euler’s method We consider the initial value problem: y ′ = f ( y , t ) , y ( t 0 ) = y 0 Numerical solution: find approximations y n ≈ y ( t n ) , n = 1 , 2 , ... for Note: y 0 = y ( t 0 ) (initial value) A k -step method: Compute y n + 1 using y n , y n − 1 , ..., y n − k + 1 .

  10. IVP Software Summary Euler’s method (cont.) A single -step method: Euler’s method. f ( y 0 , t 0 ) = y ′ ( t 0 ) ≈ y ( t 1 ) − y ( t 0 ) , h 0 where h 0 = t 1 − t 0 . The first step: y 1 = y 0 + h 0 f ( y 0 , t 0 )

  11. IVP Software Summary Euler’s method (cont.) A single -step method: Euler’s method. f ( y 0 , t 0 ) = y ′ ( t 0 ) ≈ y ( t 1 ) − y ( t 0 ) , h 0 where h 0 = t 1 − t 0 . The first step: y 1 = y 0 + h 0 f ( y 0 , t 0 ) Euler’s method y n + 1 = y n + h n f ( y n , t n ) Produces: y 0 = y ( t 0 ) , y 1 ≈ y ( t 1 ) , y 2 ≈ y ( t 2 ) , ...

  12. IVP Software Summary Example y ′ = − y , y ( 0 ) = 1 . 0. (Solution y = e − t )

  13. IVP Software Summary Example y ′ = − y , y ( 0 ) = 1 . 0. (Solution y = e − t ) h = 0 . 4 Step 1: y 1 = y 0 − hy 0 = 1 . 0 − 0 . 4 × 1 . 0 = 0 . 6 ( ≈ y ( 0 . 4 ) = e − 0 . 4 ≈ 0 . 6703) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

  14. IVP Software Summary Example u 1 ( t ) = 0 . 6 e − t + 0 . 4 ≈ 0 . 8951 e − t in the solution family. u ′ 1 = − u 1 , u 1 ( 0 ) ≈ 0 . 8951 ( u 1 ( 0 . 4 ) = 0 . 6) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

  15. IVP Software Summary Example Step 2: y 2 = y 1 − hy 1 = 0 . 6 − 0 . 4 × 0 . 6 = 0 . 36

  16. IVP Software Summary Example Step 2: y 2 = y 1 − hy 1 = 0 . 6 − 0 . 4 × 0 . 6 = 0 . 36 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

  17. IVP Software Summary Example u 2 ( t ) = 0 . 36 e − t + 0 . 8 ≈ 0 . 8012 e − t in the solution family. u ′ 2 = − u 2 , u 2 ( 0 ) ≈ 0 . 8012 ( u 2 ( 0 . 8 ) = 0 . 36) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

  18. IVP Software Summary Euler’s method In general u ′ n ( t ) = f ( u n ( t ) , t ) , in the solution family u n ( t n ) = y n , passing ( t n , y n ) u n ( t n + 1 ) ≈ u n ( t n ) + h n u ′ n ( t n ) = y n + h n f ( u n ( t n ) , t n ) = y n + h n f ( y n , t n ) = y n + 1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

  19. IVP Software Summary Euler’s method Starting with t 0 and y 0 = y ( t 0 ) , as we proceed, we jump from one solution in the family to another. 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

  20. IVP Software Summary Errors Two sources of errors: discretization error and roundoff error. Discretization error : caused by the method used, independent of the computer used and the program implementing the method.

  21. IVP Software Summary Errors Two sources of errors: discretization error and roundoff error. Discretization error : caused by the method used, independent of the computer used and the program implementing the method. Two types of discretization error: Global error: e n = y n − y ( t n ) Local error: the error in one step

  22. IVP Software Summary Local error Consider t n as the starting point and the approximation y n at t n as the initial value , if u n ( t ) is the solution of u ′ n = f ( u n , t ) , u n ( t n ) = y n then the local error is d n = y n + 1 − u n ( t n + 1 )

  23. IVP Software Summary Example Step 1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Local error d 0 = y 1 − y ( t 1 ) = 0 . 6 − e − 0 . 4 ≈ − 0 . 0703. Global error e 1 same as d 0 .

  24. IVP Software Summary Example Step 2 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Local error d 1 = y 2 − u 1 ( t 2 ) = 0 . 36 − u 1 ( 0 . 8 ) ≈ − 0 . 0422. Global error e 2 = y 2 − y ( t 2 ) = 0 . 36 − e − 0 . 8 ≈ − 0 . 0893.

  25. IVP Software Summary Example 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 d 0 = y 1 − y ( t 1 ) = 0 . 6 − e − 0 . 4 ≈ − 0 . 0703 d 1 = y 2 − u 1 ( t 2 ) = 0 . 36 − u 1 ( 0 . 8 ) ≈ − 0 . 0422 e 2 = y 2 − y ( t 2 ) = 0 . 36 − e − 0 . 8 ≈ − 0 . 0893

  26. IVP Software Summary Stability Relation between global error e n and local error d n If the differential equation is unstable, N − 1 | e N | > | d n | � n = 0 If the differential equation is stable, N − 1 | e N | ≤ | d n | � n = 0 In this case, � N − 1 n = 0 | d n | is an upper bound for the global error | e N | .

  27. IVP Software Summary Example In the previous example: Local errors | d 0 | = 0 . 0703 and | d 1 | = 0 . 0422 Global error | e 2 | = 0 . 0893 | e 2 | < | d 0 | + | d 1 |

  28. IVP Software Summary Example In the previous example: Local errors | d 0 | = 0 . 0703 and | d 1 | = 0 . 0422 Global error | e 2 | = 0 . 0893 | e 2 | < | d 0 | + | d 1 | More generally, y ′ = α y , solution family y = Ce α t . Stable when α < 0.

  29. IVP Software Summary Accuracy A measurement for the accuracy of a method An order p method: | d n | ≤ Ch p + 1 ( or O ( h p + 1 )) n n C : independent of n and h n .

  30. IVP Software Summary Example: Euler’s method y n + 1 = y n + h n f ( y n , t n ) Local solution u n ( t ) u ′ n ( t ) = f ( u n ( t ) , t ) , u n ( t n ) = y n Taylor expansion at t n : u n ( t ) = u n ( t n ) + ( t − t n ) u ′ ( t n ) + O (( t − t n ) 2 ) Since y n = u n ( t n ) and u ′ ( t n ) = f ( y n , t n ) , we get u n ( t n + 1 ) = y n + h n f ( y n , t n ) + O ( h 2 n ) Local error d n = y n + 1 − u n ( t n + 1 ) = O ( h 2 n ) Euler’s method is a first order method ( p = 1)

  31. IVP Software Summary Accuracy (cont.) Consider the interval [ t 0 , t N ] and partition t 0 , t 1 , ..., t N . Roughly, the global error N − 1 | d n | ≈ N · O ( h p + 1 ) ≈ ( t N − t 0 ) · O ( h p ) | e N | ≈ � n = 0 at the final point t N is roughly O ( h p ) for a method of order p .

  32. IVP Software Summary Accuracy (cont.) Consider the interval [ t 0 , t N ] and partition t 0 , t 1 , ..., t N . Roughly, the global error N − 1 | d n | ≈ N · O ( h p + 1 ) ≈ ( t N − t 0 ) · O ( h p ) | e N | ≈ � n = 0 at the final point t N is roughly O ( h p ) for a method of order p . For a p th order method, if the subintervals h n are cut in half, then the average local error is reduced by a factor of 2 p + 1 , the global error is reduced by a factor of 2 p . (But double the number of steps, i.e., more work.)

  33. IVP Software Summary Roundoff Error Each step of the Euler’s method y n + 1 = y n + h n f ( y n , t n ) + ǫ | ǫ | = O ( u ) . Total rounding error: N ǫ = b ǫ/ h ( b = t N − t 0 , fixed step size h ) Ch + ǫ � � total error ≈ b h

  34. IVP Software Summary Roundoff Error Each step of the Euler’s method y n + 1 = y n + h n f ( y n , t n ) + ǫ | ǫ | = O ( u ) . Total rounding error: N ǫ = b ǫ/ h ( b = t N − t 0 , fixed step size h ) Ch + ǫ � � total error ≈ b h Remarks If h is too small, the roundoff error is large If h is too large, the discretization error is large

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend