lecture 4 numerical solution of ordinary differential
play

Lecture 4: Numerical solution of ordinary differential equations - PowerPoint PPT Presentation

Lecture 4: Numerical solution of ordinary differential equations Habib Ammari Department of Mathematics, ETH Z urich Numerical methods for ODEs Habib Ammari Numerical solution of ODEs General explicit one-step method: Consistency;


  1. Numerical solution of ODEs • Second derivative can be found by differentiating the equation with respect to t : d 2 x dt 2 = d dt f ( t , x ) = ∂ f ∂ t ( t , x ) + ∂ f ∂ x ( t , x ) dx dt . • Second order Taylor method � ∂ f � x k +1 = x k + (∆ t ) f ( t k , x k ) + (∆ t ) 2 ∂ t ( t k , x k ) + ∂ f ∂ x ( t k , x k ) f ( t k , x k ) ( ∗ ) . 2 Numerical methods for ODEs Habib Ammari

  2. Numerical solution of ODEs • Proposition: • Suppose that f ∈ C 2 . • Then ( ∗ ): of second order. Numerical methods for ODEs Habib Ammari

  3. Numerical solution of ODEs • Proof: • f ∈ C 2 ⇒ x ∈ C 3 . • ⇒ truncation error T k given by T k (∆ t ) = (∆ t ) 2 d 3 x dt 3 ( τ ) , 6 for some τ ∈ [ t k , t k +1 ] and so, ( ∗ ): of second order. Numerical methods for ODEs Habib Ammari

  4. Numerical solution of ODEs • Drawbacks of higher order Taylor methods: (i) Owing to their dependence upon the partial derivatives of f , f needs to be smooth; (ii) Efficient evaluation of the terms in the Taylor approximation and avoidance of round off errors. Numerical methods for ODEs Habib Ammari

  5. Numerical solution of ODEs • Integral equation method • Avoid the complications inherent in a direct Taylor expansion. • x ( t ) coincides with the solution to the integral equation � t x ( t ) = x 0 + f ( s , x ( s )) ds , t ∈ [0 , T ] . 0 Starting at the discretization point t k instead of 0, and integrating until time t = t k +1 gives � t k +1 ( ∗∗ ) x ( t k +1 ) = x ( t k ) + f ( s , x ( s )) ds . t k • Implicitly computes the value of the solution at the subsequent discretization point. Numerical methods for ODEs Habib Ammari

  6. Numerical solution of ODEs • Compare formula ( ∗∗ ) with the explicit Euler method x k +1 = x k + (∆ t ) f ( t k , x k ) . • ⇒ Approximation of the integral by � t k +1 f ( s , x ( s )) ds ≈ (∆ t ) f ( t k , x ( t k )) . t k • Left endpoint rule for numerical integration. Numerical methods for ODEs Habib Ammari

  7. Numerical solution of ODEs • Left endpoint rule for numerical integration: • Left endpoint rule : not an especially accurate method of numerical integration. • Better methods include the Trapezoid rule: Numerical methods for ODEs Habib Ammari

  8. Numerical solution of ODEs • Numerical integration formulas for continuous functions. (i) Trapezoidal rule : � � � t k +1 g ( s ) ds ≈ ∆ t g ( t k +1 ) + g ( t k ) ; 2 t k (ii) Simpson’s rule : � � � t k +1 g ( s ) ds ≈ ∆ t g ( t k +1 ) + 4 g ( t k + t k +1 ) + g ( t k ) ; 6 2 t k (iii) Trapezoidal rule: exact for polynomials of order one ; Simpson’s rule: exact for polynomials of second order . Numerical methods for ODEs Habib Ammari

  9. Numerical solution of ODEs • Use the more accurate Trapezoidal approximation � t k +1 � � f ( s , x ( s )) ds ≈ (∆ t ) f ( t k , x ( t k )) + f ( t k +1 , x ( t k +1 )) . 2 t k • Trapezoidal scheme: � � x k +1 = x k + (∆ t ) f ( t k , x k ) + f ( t k +1 , x k +1 ) . 2 • Trapezoidal scheme: implicit numerical method. Numerical methods for ODEs Habib Ammari

  10. Numerical solution of ODEs • Proposition: • Suppose that f ∈ C 2 and (∆ t ) C f ( ∗ ∗ ∗ ) < 1; 2 C f : Lipschitz constant for f in x . • Trapezoidal scheme: convergent and of second order. Numerical methods for ODEs Habib Ammari

  11. Numerical solution of ODEs • Proof: • Consistency: � � Φ( t , x , ∆ t ) := 1 f ( t , x ) + f ( t + ∆ t , x + (∆ t )Φ( t , x , ∆ t )) . 2 • ∆ t = 0. Numerical methods for ODEs Habib Ammari

  12. Numerical solution of ODEs • Stability: • � � � ≤ C f | x − y | � Φ( t , x , ∆ t ) − Φ( t , y , ∆ t ) � � +∆ t � Φ( t , x , ∆ t ) − Φ( t , y , ∆ t ) � . 2 C f • ⇒ �� � � 1 − (∆ t ) C f � Φ( t , x , ∆ t ) − Φ( t , y , ∆ t ) � ≤ C f | x − y | . 2 • ⇒ Stability holds with C f C Φ = , 1 − (∆ t ) C f 2 provided that ∆ t satisfies ( ∗ ∗ ∗ ). Numerical methods for ODEs Habib Ammari

  13. Numerical solution of ODEs • Second order scheme: • By the mean-value theorem, x ( t k +1 ) − x ( t k ) T k (∆ t ) = ∆ t � � − 1 f ( t k , x ( t k )) + f ( t k +1 , x ( t k +1 )) 2 12(∆ t ) 2 d 3 x − 1 = dt 3 ( τ ) , for some τ ∈ [ t k , t k +1 ] ⇒ second order scheme, provided that f ∈ C 2 (and consequently x ∈ C 3 ). Numerical methods for ODEs Habib Ammari

  14. Numerical solution of ODEs • An alternative scheme: replace x k +1 by x k + (∆ t ) f ( t k , x k ). • ⇒ Improved Euler scheme: � � x k +1 = x k + (∆ t ) f ( t k , x k ) + f ( t k +1 , x k + ( ∆t ) f ( t k , x k )) . 2 • Proposition: Improved Euler scheme: convergent and of second order. • Improved Euler scheme: performs comparably to the Trapezoidal scheme, and significantly better than the Euler scheme. • Alternative numerical approximations to the integral equation ⇒ a range of numerical solution schemes. Numerical methods for ODEs Habib Ammari

  15. Numerical solution of ODEs • Midpoint rule : � t k +1 f ( s , x ( s )) ds ≈ (∆ t ) f ( t k + ∆ t 2 , x ( t k + ∆ t 2 )) . t k • Midpoint rule: same order of accuracy as the trapezoid rule. 2 ) by x k + ∆ t • Midpoint scheme: approximate x ( t k + ∆ t 2 f ( t k , x k ), � � t k + ∆ t 2 , x k + ∆ t x k +1 = x k + (∆ t ) f 2 f ( t k , x k ) . • Midpoint scheme: of second order. Numerical methods for ODEs Habib Ammari

  16. Numerical solution of ODEs • Example of linear systems • Consider the linear system of ODEs  dx  dt = Ax ( t ) , t ∈ [0 , + ∞ [ ,  x (0) = x 0 ∈ R d . • A ∈ M d ( C ): independent of t . • DEFINITION: • A one-step numerical scheme for solving the linear system of ODEs: stable if there exists a positive constant C 0 s.t. | x k +1 | ≤ C 0 | x 0 | for all k ∈ N . Numerical methods for ODEs Habib Ammari

  17. Numerical solution of ODEs • Consider the following schemes: (i) Explicit Euler’s scheme: x k +1 = x k + (∆ t ) Ax k ; (ii) Implicit Euler’s scheme: x k +1 = x k + (∆ t ) Ax k +1 ; (iii) Trapezoidal scheme: � � x k +1 = x k + (∆ t ) Ax k + Ax k +1 , 2 with k ∈ N , and x 0 = x 0 . Numerical methods for ODEs Habib Ammari

  18. Numerical solution of ODEs • Proposition: Suppose that ℜ λ j < 0 for all j . The following results hold: (i) Explicit Euler scheme: stable for ∆ t small enough; (ii) Implicit Euler scheme: unconditionally stable; (iii) Trapezoidal scheme: unconditionally stable. Numerical methods for ODEs Habib Ammari

  19. Numerical solution of ODEs • Proof: • Consider the explicit Euler scheme. By a change of basis, x k +1 = ( I + ∆ t ( D + N )) k � x 0 , � x k = Cx k . where � x 0 ∈ E j , then • If � min { k , d } � x k = k (1 + ∆ t λ j ) k − l (∆ t ) l N l � C l x 0 , � l =0 C l k : binomial coefficient. Numerical methods for ODEs Habib Ammari

  20. Numerical solution of ODEs • If | 1 + (∆ t ) λ j | < 1, then � x k : bounded. x 0 s.t. | � • If | 1 + (∆ t ) λ j | > 1, then one can find � x k | → + ∞ (exponentially) as k → + ∞ . x 0 s.t. N � x 0 � = 0 , N 2 � x 0 = 0, • If | 1 + (∆ t ) λ j | = 1 and N � = 0, then for all � x k = (1 + (∆ t ) λ j ) k � x 0 + (1 + (∆ t ) λ j ) k − 1 k ∆ tN � x 0 � goes to infinity as k → + ∞ . • Stability condition | 1 + (∆ t ) λ j | < 1 ⇔ ∆ t < − 2 ℜ λ j | λ j | 2 , holds for ∆ t small enough. Numerical methods for ODEs Habib Ammari

  21. Numerical solution of ODEs • Implicit Euler scheme: x k +1 = ( I − ∆ t ( D + N )) − k � x 0 . � • All the eigenvalues of the matrix ( I − ∆ t ( D + N )) − 1 : of modulus strictly smaller than 1. • ⇒ Implicit Euler scheme: unconditionally stable. • Trapezoidal scheme: x k +1 = ( I − (∆ t ) ( D + N )) − k ( I + (∆ t ) x 0 . ( D + N )) k � � 2 2 • Stability condition: | 1 + (∆ t ) λ j | < | 1 − (∆ t ) λ j | , 2 2 holds for all ∆ t > 0 since ℜ λ j < 0. Numerical methods for ODEs Habib Ammari

  22. Numerical solution of ODEs • REMARK: Explicit and implicit Euler schemes: of order one; Trapezoidal scheme: of order two. Numerical methods for ODEs Habib Ammari

  23. Numerical solution of ODEs • Runge-Kutta methods: • By far the most popular and powerful general-purpose numerical methods for integrating ODEs. • Idea behind: evaluate f at carefully chosen values of its arguments, t and x , in order to create an accurate approximation (as accurate as a higher-order Taylor expansion) of x ( t + ∆ t ) without evaluating derivatives of f . Numerical methods for ODEs Habib Ammari

  24. Numerical solution of ODEs • Runge-Kutta schemes: derived by matching multivariable Taylor series expansions of f ( t , x ) with the Taylor series expansion of x ( t + ∆ t ). • To find the right values of t and x at which to evaluate f : • Take a Taylor expansion of f evaluated at these (unknown) values; • Match the resulting numerical scheme to a Taylor series expansion of x ( t + ∆ t ) around t . Numerical methods for ODEs Habib Ammari

  25. Numerical solution of ODEs • Generalization of Taylor’s theorem to functions of two variables: THEOREM: • f ( t , x ) ∈ C n +1 ([0 , T ] × R ). Let ( t 0 , x 0 ) ∈ [0 , T ] × R . • There exist t 0 ≤ τ ≤ t , x 0 ≤ ξ ≤ x , s.t. f ( t , x ) = P n ( t , x ) + R n ( t , x ) , • P n ( t , x ): n th Taylor polynomial of f around ( t 0 , x 0 ); • R n ( t , x ): remainder term associated with P n ( t , x ). Numerical methods for ODEs Habib Ammari

  26. Numerical solution of ODEs • � � ( t − t 0 ) ∂ f ∂ t ( t 0 , x 0 ) + ( x − x 0 ) ∂ f P n ( t , x ) = f ( t 0 , x 0 ) + ∂ x ( t 0 , x 0 ) � ( t − t 0 ) 2 ∂ 2 f ∂ t 2 ( t 0 , x 0 ) + ( t − t 0 )( x − x 0 ) ∂ 2 f + ∂ t ∂ x ( t 0 , x 0 ) 2 � +( x − x 0 ) 2 ∂ 2 f ∂ x 2 ( t 0 , x 0 ) 2 � 1 � n � ∂ n f C n j ( t − t 0 ) n − j ( x − x 0 ) j . . . + ∂ t n − j ∂ x j ( t 0 , x 0 ) ; n ! j =0 • � n +1 ∂ n +1 f 1 C n +1 ( t − t 0 ) n +1 − j ( x − x 0 ) j R n ( t , x ) = ∂ t n +1 − j ∂ x j ( τ, ξ ) . j ( n + 1)! j =0 Numerical methods for ODEs Habib Ammari

  27. Numerical solution of ODEs • Illustration: obtain a second-order accurate method (truncation error O ((∆ t ) 2 )). • Match x + ∆ tf ( t , x ) + (∆ t ) 2 � ∂ f � + (∆ t ) 3 d 2 ∂ t ( t , x ) + ∂ f ∂ x ( t , x ) f ( t , x ) dt 2 [ f ( τ, x )] 2 6 to x + (∆ t ) f ( t + α 1 , x + β 1 ) , τ ∈ [ t , t + ∆ t ] and α 1 and β 1 : to be found. • Match + (∆ t ) 2 d 2 � ∂ f � f ( t , x ) + (∆ t ) ∂ t ( t , x ) + ∂ f ∂ x ( t , x ) f ( t , x ) dt 2 [ f ( t , x )] 2 6 with f ( t + α 1 , x + β 1 ) at least up to terms of the order of O (∆ t ). Numerical methods for ODEs Habib Ammari

  28. Numerical solution of ODEs • Multivariable version of Taylor’s theorem to f , ∂ x ( t , x ) + α 2 ∂ 2 f f ( t + α 1 , x + β 1 ) = f ( t , x ) + α 1 ∂ f ∂ t ( t , x ) + β 1 ∂ f 1 ∂ t 2 ( τ, ξ ) 2 + α 1 β 1 ∂ 2 f ∂ t ∂ x ( τ, ξ ) + β 2 ∂ 2 f 1 ∂ x 2 ( τ, ξ ) , 2 t ≤ τ ≤ t + α 1 and x ≤ ξ ≤ x + β 1 . • ⇒ α 1 = ∆ t β 1 = ∆ t and 2 f ( t , x ) . 2 • ⇒ Resulting numerical scheme: explicit midpoint method: the simplest example of a Runge-Kutta method of second order. • Improved Euler method: also another often-used Runge-Kutta method. Numerical methods for ODEs Habib Ammari

  29. Numerical solution of ODEs • General Runge-Kutta method: � m x k +1 = x k + ∆ t c i f ( t i , k , x i , k ) , i =1 m : number of terms in the method. • Each t i , k denotes a point in [ t k , t k +1 ]. • Second argument x i , k ≈ x ( t i , k ) can be viewed as an approximation to the solution at the point t i , k . • To construct an n th order Runge-Kutta method, we need to take at least m ≥ n terms. Numerical methods for ODEs Habib Ammari

  30. Numerical solution of ODEs • Best-known Runge-Kutta method: fourth-order Runge-Kutta method , which uses four evaluations of f during each step.  κ 1 := f ( t k , x k ) ,       2 , x k + ∆ t  κ 2 := f ( t k + ∆ t 2 κ 1 ) ,      2 , x k + ∆ t κ 3 := f ( t k + ∆ t 2 κ 2 ) ,    κ 4 := f ( t k +1 , x k + ∆ t κ 3 ) ,         x k +1 = x k + (∆ t )  ( κ 1 + 2 κ 2 + 2 κ 3 + κ 4 ) . 6 • Values of f at the midpoint in time: given four times as much weight as values at the endpoints t k and t k +1 (similar to Simpson’s rule from numerical integration). Numerical methods for ODEs Habib Ammari

  31. Numerical solution of ODEs • Construction of Runge-Kutta methods: • Construct Runge-Kutta methods by generalizing collocation methods. • Discuss their consistency, stability, and order. Numerical methods for ODEs Habib Ammari

  32. Numerical solution of ODEs • Collocation methods: • P m : space of real polynomials of degree ≤ m . • Interpolating polynomial: • Given a set of m distinct quadrature points c 1 < c 2 < . . . < c m in R , and corresponding data g 1 , . . . , g m ; • There exists a unique polynomial, P ( t ) ∈ P m − 1 s.t. P ( c i ) = g i , i = 1 , . . . , m . Numerical methods for ODEs Habib Ammari

  33. Numerical solution of ODEs • DEFINITION: • Define the i th Lagrange interpolating polynomial l i ( t ), i = 1 , . . . , m , for the set of quadrature points { c j } by m � t − c j l i ( t ) := . c i − c j j � = i , j =1 • Set of Lagrange interpolating polynomials: form a basis of P m − 1 ; • Interpolating polynomial P corresponding to the data { g j } given by � m P ( t ) := g i l i ( t ) . i =1 Numerical methods for ODEs Habib Ammari

  34. Numerical solution of ODEs • Consider a smooth function g on [0 , 1]. • Approximate the integral of g on [0 , 1] by exactly integrating the Lagrange interpolating polynomial of order m − 1 based on m quadrature points 0 ≤ c 1 < c 2 < . . . < c m ≤ 1. • Data: values of g at the quadrature points g i = g ( c i ), i = 1 , . . . , m . Numerical methods for ODEs Habib Ammari

  35. Numerical solution of ODEs • Define the weights � 1 b i = l i ( s ) ds . 0 • Quadrature formula: � 1 � 1 m m � � g ( s ) ds ≈ g i l i ( s ) ds = b i g ( c i ) . 0 0 i =1 i =1 Numerical methods for ODEs Habib Ammari

  36. Numerical solution of ODEs • f : smooth function on [0 , T ]; t k = k ∆ t for k = 0 , . . . , K = T / (∆ t ): discretization points in [0 , T ]. � t k +1 • f ( s ) ds can be approximated by t k � t k +1 � 1 � m f ( s ) ds = (∆ t ) f ( t k + ∆ t τ ) d τ ≈ (∆ t ) b i f ( t k + (∆ t ) c i ) . t k 0 i =1 Numerical methods for ODEs Habib Ammari

  37. Numerical solution of ODEs • x : polynomial of degree m satisfying  x (0) = x 0 ,  dx  dt ( c i ∆ t ) = F i , F i ∈ R , i = 1 , . . . , m . • Lagrange interpolation formula ⇒ for t in the first time-step interval [0 , ∆ t ], � m dx F i l i ( t dt ( t ) = ∆ t ) . i =1 Numerical methods for ODEs Habib Ammari

  38. Numerical solution of ODEs • Integrating over the intervals [0 , c i ∆ t ] ⇒ � c i � m � m x ( c i ∆ t ) = x 0 + (∆ t ) F j l j ( s ) ds = x 0 + (∆ t ) a ij F j , 0 j =1 j =1 for i = 1 , . . . , m , with � c i a ij := l j ( s ) ds . 0 • Integrating over [0 , ∆ t ] ⇒ � 1 � m � m x (∆ t ) = x 0 + (∆ t ) F i l i ( s ) ds = x 0 + (∆ t ) b i F i . 0 i =1 i =1 Numerical methods for ODEs Habib Ammari

  39. Numerical solution of ODEs • Writing dx / dt = f ( x ( t )), on the first time step interval [0 , ∆ t ],  m �    F i = f ( x 0 + (∆ t ) a ij F j ) , i = 1 , . . . , m ,    j =1  � m     x (∆ t ) = x 0 + (∆ t ) b i F i .  i =1 • Similarly, we have on [ t k , t k +1 ]  m �    F i , k = f ( x ( t k ) + (∆ t ) a ij F j , k ) , i = 1 , . . . , m ,    j =1  � m    x ( t k +1 ) = x ( t k ) + (∆ t ) b i F i , k .   i =1 • In the collocation method : one first solves the coupled nonlinear system to obtain F i , k , i = 1 , . . . , m , and then computes x ( t k +1 ) from x ( t k ). Numerical methods for ODEs Habib Ammari

  40. Numerical solution of ODEs • REMARK: • m � t l − 1 = c l − 1 l i ( t ) , t ∈ [0 , 1] , l = 1 , . . . , m , i i =1 • ⇒ m � = 1 b i c l − 1 l , l = 1 , . . . , m , i i =1 and m � = c l a ij c l − 1 i i , l = 1 , . . . , m . l , j j =1 Numerical methods for ODEs Habib Ammari

  41. Numerical solution of ODEs • Runge-Kutta methods as generalized collocation methods • In the collocation method, the coefficients b i and a ij : defined by certain integrals of the Lagrange interpolating polynomials associated with a chosen set of quadrature nodes c i , i = 1 , . . . , m . • Natural generalization of collocation methods: obtained by allowing the coefficients c i , b i , and a ij to take arbitrary values, not necessary related to quadrature formulas. Numerical methods for ODEs Habib Ammari

  42. Numerical solution of ODEs • No longer assume the c i to be distinct. • However, assume that m � c i = a ij , i = 1 , . . . , m . j =1 • ⇒ Class of Runge-Kutta methods for solving the ODE,  � m  F i , k = f ( t i , k , x k + (∆ t )   a ij F j , k ) ,    j =1  m �   x k +1 = x k + (∆ t )  b i F i , k ,   i =1 t i , k = t k + c i ∆ t , or equivalently,  m �   x i , k = x k + (∆ t )  a ij f ( t j , k , x j , k ) ,    j =1  � m   x k +1 = x k + (∆ t )  b i f ( t i , k , x i , k ) .   i =1 Numerical methods for ODEs Habib Ammari

  43. Numerical solution of ODEs • Let κ j := f ( t + c j ∆ t , x j ); • Define Φ by  m �    x i = x + (∆ t ) a ij κ j ,    j =1  � m    Φ( t , x , ∆ t ) = b i f ( t + c i ∆ t , x i ) .   i =1 • ⇒ One step method. • If a ij = 0 for j ≥ i ⇒ scheme: explicit. Numerical methods for ODEs Habib Ammari

  44. Numerical solution of ODEs • EXAMPLES: • Explicit Euler’s method and Trapezoidal scheme: Runge-Kutta methods. • Explicit Euler’s method: m = 1 , b 1 = 1 , a 11 = 0. Numerical methods for ODEs Habib Ammari

  45. Numerical solution of ODEs • Trapezoidal scheme: m = 2 , b 1 = b 2 = 1 / 2 , a 11 = a 12 = 0 , a 21 = a 22 = 1 / 2. Numerical methods for ODEs Habib Ammari

  46. Numerical solution of ODEs • Fourth-order Runge-Kutta method: m = 4 , c 1 = 0 , c 2 = c 3 = 1 / 2 , c 4 = 1 , b 1 = 1 / 6 , b 2 = b 3 = 1 / 3 , b 4 = 1 / 6 , a 21 = a 32 = 1 / 2 , a 43 = 1 , and all the other a ij entries are zero. Numerical methods for ODEs Habib Ammari

  47. Numerical solution of ODEs • Consistency, stability, convergence, and order of Runge-Kutta methods • Runge-Kutta scheme: consistent iff � m b j = 1 . j =1 Numerical methods for ODEs Habib Ammari

  48. Numerical solution of ODEs • Stability: • | A | = ( | a ij | ) m i , j =1 . • Spectral radius ρ ( | A | ) of the matrix | A | : ρ ( | A | ) := max {| λ j | , λ j : eigenvalue of | A |} . Numerical methods for ODEs Habib Ammari

  49. Numerical solution of ODEs • THEOREM: • C f : Lipschitz constant for f . • Suppose (∆ t ) C f ρ ( | A | ) < 1 . • Then the Runge-Kutta method : stable. Numerical methods for ODEs Habib Ammari

  50. Numerical solution of ODEs • PROOF: • � � m � Φ( t , x , ∆ t ) − Φ( t , y , ∆ t ) = b i f ( t + c i ∆ t , x i ) − f ( t + c i ∆ t , y i ) , i =1 with m � x i = x + (∆ t ) a ij f ( t + c j ∆ t , x j ) , j =1 and m � y i = y + (∆ t ) a ij f ( t + c j ∆ t , y j ) . j =1 Numerical methods for ODEs Habib Ammari

  51. Numerical solution of ODEs • ⇒ � � m � x i − y i = x − y + (∆ t ) a ij f ( t + c j ∆ t , x j ) − f ( t + c j ∆ t , y j ) . j =1 • ⇒ For i = 1 , . . . , m , � m | x i − y i | ≤ | x − y | + (∆ t ) C f | a ij || x j − y j | . j =1 Numerical methods for ODEs Habib Ammari

  52. Numerical solution of ODEs • X and Y :     | x 1 − y 1 | | x − y |  .   .  . . X = and Y =  .    . . | x m − y m | | x − y | • X ≤ Y + (∆ t ) C f | A | X , ⇒ X ≤ ( I − (∆ t ) C f | A | ) − 1 Y , provided that (∆ t ) C f ρ ( | A | ) < 1 . • ⇒ stability of the Runge-Kutta scheme. Numerical methods for ODEs Habib Ammari

  53. Numerical solution of ODEs • Dahlquist-Lax equivalence theorem ⇒ Runge-Kutta scheme: convergent provided that � m j =1 b j = 1 and (∆ t ) C f ρ ( | A | ) < 1 hold. Numerical methods for ODEs Habib Ammari

  54. Numerical solution of ODEs • Order of the Runge-Kutta scheme: compute the order as ∆ t → 0 of the truncation error T k (∆ t ) = x ( t k +1 ) − x ( t k ) − Φ( t k , x ( t k ) , ∆ t ) . ∆ t • Write � m � m T k (∆ t ) = x ( t k +1 ) − x ( t k ) − b i f ( t k + c i ∆ t , x ( t k ) + ∆ t a ij κ j ) . ∆ t i =1 j =1 • Suppose that f : smooth enough ⇒ m � f ( t k + c i ∆ t , x ( t k ) + ∆ t a ij κ j ) j =1 � � � c i ∂ f a ij κ j ) ∂ f = f ( t k , x ( t k )) + ∆ t ∂ t ( t k , x ( t k )) + ( ∂ x ( t k , x ( t k )) j =1 + O ((∆ t ) 2 ) . Numerical methods for ODEs Habib Ammari

  55. Numerical solution of ODEs • � � a ij κ j = ( a ij ) f ( t k , x ( t k )) + O (∆ t ) = c i f ( t k , x ( t k )) + O (∆ t ) . j =1 j =1 Numerical methods for ODEs Habib Ammari

  56. Numerical solution of ODEs • ⇒ � m f ( t k + c i ∆ t , x ( t k ) + ∆ t a ij κ j ) j =1 � ∂ f � ∂ t ( t k , x ( t k )) + ∂ f = f ( t k , x ( t k )) + ∆ tc i ∂ x ( t k , x ( t k )) f ( t k , x ( t k )) + O ((∆ t ) 2 ) . Numerical methods for ODEs Habib Ammari

  57. Numerical solution of ODEs • THEOREM: • Assume that f : smooth enough. • Then the Runge-Kutta scheme: of order 2 provided that the conditions � m b j = 1 j =1 and m � b i c i = 1 2 i =1 hold. Numerical methods for ODEs Habib Ammari

  58. Numerical solution of ODEs • Higher-order Taylor expansions ⇒ • THEOREM: • Assume that f : smooth enough. • Then the Runge-Kutta scheme: of order 3 provided that the conditions m � b j = 1 , j =1 m � b i c i = 1 2 , i =1 and � m � m � m i = 1 b i a ij c j = 1 b i c 2 3 , 6 i =1 i =1 j =1 hold. Numerical methods for ODEs Habib Ammari

  59. Numerical solution of ODEs • Of Order 4 provided that in addition m m m m m � � � � � i = 1 b i c i a ij c j = 1 j = 1 b i c 3 b i c i a ij c 2 4 , 8 , 12 , i =1 i =1 j =1 i =1 j =1 � m � m � m b i a ij a jl c l = 1 24 i =1 j =1 l =1 hold. • The (fourth-order) Runge-Kutta scheme: of order 4. Numerical methods for ODEs Habib Ammari

  60. Numerical solution of ODEs • Multi-step methods • Runge-Kutta methods: improvement over Euler’s methods in terms of accuracy, but achieved by investing additional computational effort. • The fourth-order Runge-Kutta method involves four function evaluations per step. Numerical methods for ODEs Habib Ammari

  61. Numerical solution of ODEs • For comparison, by considering three consecutive points t k − 1 , t k , t k +1 , integrating the differential equation between t k − 1 and t k +1 , and applying Simpson’s rule to approximate the resulting integral yields � t k +1 x ( t k +1 ) = x ( t k − 1 ) + f ( s , x ( s )) ds t k − 1 � � ≈ x ( t k − 1 ) + (∆ t ) f ( t k − 1 , x ( t k − 1 )) + 4 f ( t k , x ( t k )) + f ( t k +1 , x ( t k +1 )) , 3 ⇒ � � x k +1 = x k − 1 + (∆ t ) f ( t k − 1 , x k − 1 ) + 4 f ( t k , x k ) + f ( t k +1 , x k +1 ) . 3 • Need two preceding values, x k and x k − 1 in order to calculate x k +1 : two-step method . • In contrast with the one-step methods: only a single value of x k required to compute the next approximation x k +1 . Numerical methods for ODEs Habib Ammari

  62. Numerical solution of ODEs • General n -step method: n n � � α j x k + j = (∆ t ) β j f ( t k + j , x k + j ) , j =0 j =0 α j and β j : real constants and α n � = 0. • If β n = 0, then x k + n : obtained explicitly from previous values of x j and f ( t j , x j ) ⇒ n -step method: explicit . Otherwise, the n -step method: implicit . Numerical methods for ODEs Habib Ammari

  63. Numerical solution of ODEs • EXAMPLE: (i) Two-step Adams-Bashforth method: explicit two-step method � � x k +2 = x k +1 + (∆ t ) 3 f ( t k +1 , x k +1 ) − f ( t k , x k ) ; 2 (ii) Three-step Adams-Bashforth method: explicit three-step method � � x k +3 = x k +2 +(∆ t ) 23 f ( t k +2 , x k +2 ) − 16 f ( t k +1 , x k +1 )+ f ( t k , x k ) ; 12 Numerical methods for ODEs Habib Ammari

  64. Numerical solution of ODEs (iii) Four-step Adams-Bashforth method: explicit four-step method � x k +4 = x k +3 + (∆ t ) 55 f ( t k +3 , x k +3 ) − 59 f ( t k +2 , x k +2 ) 24 � +37 f ( t k +1 , x k +1 ) − 9 f ( t k , x k ) ; (iv) Two-step Adams-Moulton method: implicit two-step method � � x k +2 = x k +1 + (∆ t ) 5 f ( t k +2 , x k +2 ) + 8 f ( t k +1 , x k +1 ) + f ( t k , x k ) ; 12 (v) Three-step Adams-Moulton method: implicit three-step method � � x k +3 = x k +2 +(∆ t ) 9 f ( t k +3 , x k +3 )+19 f ( t k +2 , x k +2 ) − 5 f ( t k +1 , x k +1 ) − 9 f ( t k , x k ) . 24 Numerical methods for ODEs Habib Ammari

  65. Numerical solution of ODEs • Construction of linear multi-step methods • Suppose that x k , k ∈ N : sequence of real numbers. • Shift operator E , forward difference operator ∆ + and backward difference operator ∆ − : E : x k �→ x k +1 , ∆ + : x k �→ x k +1 − x k , ∆ − : x k �→ x k − x k − 1 . • ∆ + = E − I and ∆ − = I − E − 1 ⇒ for any n ∈ N , � n ( E − I ) n = ( − 1) j C n j E n − j j =0 and n � ( I − E − 1 ) n = ( − 1) j C n j E − j . j =0 Numerical methods for ODEs Habib Ammari

  66. Numerical solution of ODEs • ⇒ � n + x k = ∆ n ( − 1) j C n j x k + n − j j =0 and � n − x k = ∆ n ( − 1) j C n j x k − j . j =0 Numerical methods for ODEs Habib Ammari

  67. Numerical solution of ODEs • y ( t ) ∈ C ∞ ( R ); t k = k ∆ t , ∆ t > 0. • Taylor series ⇒ for any s ∈ N , � + ∞ � � � � 1 l !( s ∆ t ∂ e s (∆ t ) ∂ E s y ( t k ) = y ( t k + s ∆ t ) = ∂ t ) l y ∂ t y ( t k ) = ( t k ) , l =0 • ⇒ E s = e s (∆ t ) ∂ ∂ t . • Formally, (∆ t ) ∂ ∂ t = ln E = − ln( I − ∆ − ) = ∆ − + 1 − + 1 2∆ 2 3∆ 3 − + . . . Numerical methods for ODEs Habib Ammari

  68. Numerical solution of ODEs • x ( t ): solution of ODE: � � ∆ − + 1 − + 1 2∆ 2 3∆ 3 (∆ t ) f ( t k , x ( t k )) = − + . . . x ( t k ) . • Successive truncation of the infinite series ⇒ x k − x k − 1 = (∆ t ) f ( t k , x k ) , 3 2 x k − 2 x k − 1 + 1 2 x k − 2 = (∆ t ) f ( t k , x k ) , 11 6 x k − 3 x k − 1 + 3 2 x k − 2 − 1 3 x k − 3 = (∆ t ) f ( t k , x k ) , and so on. • Class of implicit multi-step methods: backward differentiation formulas. Numerical methods for ODEs Habib Ammari

  69. Numerical solution of ODEs • Similarly, E − 1 ((∆ t ) ∂ ∂ t ) = (∆ t ) ∂ ∂ t E − 1 = − ( I − ∆ − ) ln( I − ∆ − ) . • ⇒ ((∆ t ) ∂ ∂ t ) = − E ( I − ∆ − ) ln( I − ∆ − ) = − ( I − ∆ − ) ln( I − ∆ − ) E . • ⇒ � � ∆ − − 1 − − 1 2∆ 2 6∆ 3 (∆ t ) f ( t k , x ( t k )) = − + . . . x ( t k +1 ) . Numerical methods for ODEs Habib Ammari

  70. Numerical solution of ODEs • Successive truncation of the infinite series ⇒ explicit numerical schemes: x k +1 − x k = (∆ t ) f ( t k , x k ) , 1 2 x k +1 − 1 2 x k − 1 = (∆ t ) f ( t k , x k ) , 1 3 x k +1 + 1 2 x k − x k − 1 + 1 6 x k − 2 = (∆ t ) f ( t k , x k ) , . . . • The first of these numerical scheme: explicit Euler method, while the second: explicit mid-point method. Numerical methods for ODEs Habib Ammari

  71. Numerical solution of ODEs • Construct further classes of multi-step methods: • For y ∈ C ∞ , � t k D − 1 y ( t k ) = y ( t 0 ) + y ( s ) ds , t 0 and � t k +1 ( E − I ) D − 1 y ( t k ) = y ( s ) ds . t k • ( E − I ) D − 1 = ∆ + D − 1 = E ∆ − D − 1 = (∆ t ) E ∆ − ((∆ t ) D ) − 1 , Numerical methods for ODEs Habib Ammari

  72. Numerical solution of ODEs • ⇒ � � − 1 . ( E − I ) D − 1 = − (∆ t ) E ∆ − ln( I − ∆ − ) Numerical methods for ODEs Habib Ammari

  73. Numerical solution of ODEs • � (∆ t ) DE − 1 � − 1 . ( E − I ) D − 1 = E ∆ − D − 1 = ∆ − ED − 1 = ∆ − ( DE − 1 ) − 1 = (∆ t )∆ − • ⇒ � � − 1 ( E − I ) D − 1 = − (∆ t )∆ − ( I − ∆ − ) ln( I − ∆ − ) . Numerical methods for ODEs Habib Ammari

  74. Numerical solution of ODEs • � t k +1 f ( s , x ( s )) ds = ( E − I ) D − 1 f ( t k , x ( t k )) , x ( t k +1 ) − x ( t k ) = t k • ⇒  � � − 1 f ( t k , x ( t k ))  − (∆ t )∆ − ( I − ∆ − ) ln( I − ∆ − ) x ( t k +1 ) − x ( t k ) = � � − 1 f ( t k , x ( t k )) .  − (∆ t ) E ∆ − ln( I − ∆ − ) Numerical methods for ODEs Habib Ammari

  75. Numerical solution of ODEs • Expand ln( I − ∆ − ) into a Taylor series on the right-hand side ⇒ � � I + 1 2∆ − + 5 − + 3 12∆ 2 8∆ 3 x ( t k +1 ) − x ( t k ) = (∆ t ) − + . . . f ( t k , x ( t k )) and � � I − 1 2∆ − − 1 − − 1 12∆ 2 24∆ 3 x ( t k +1 ) − x ( t k ) = (∆ t ) − + . . . f ( t k +1 , x ( t k +1 )) . • Successive truncations ⇒ families of (explicit) Adams-Bashforth methods and of (implicit) Adams-Moulton methods. Numerical methods for ODEs Habib Ammari

  76. Numerical solution of ODEs • Consistency, stability, and convergence • Introduce the concepts of consistency, stability, and convergence for analyzing linear multi-step methods. Numerical methods for ODEs Habib Ammari

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend