skin model and its
play

Skin Model and its impact on Digital Mammography Rodrigo T . - PowerPoint PPT Presentation

Skin Model and its impact on Digital Mammography Rodrigo T . Massera; Alessandra Tomal Institute of Physics "Gleb Wataghin 1 University of Campinas Campinas, Brazil Outline Mammography Dosimetry Mean Glandular Dose


  1. Skin Model and its impact on Digital Mammography Rodrigo T . Massera; Alessandra Tomal Institute of Physics "Gleb Wataghin ” 1 University of Campinas Campinas, Brazil

  2. Outline • Mammography • Dosimetry – Mean Glandular Dose Motivation • Implemented Models • How? Methodology • MGD vs Skin Model • Differences Results • Summary Conclusions 2

  3. Introduction Why is dosimetry important in mammography?  Population-based screening programs  Use Ionizing Radiation  Quality Control and Optimization 3

  4. Mean Glandular Dose (MGD) Real Breast Incident Photons Skin Glandular Tissue Adipose Tissue

  5. Mean Glandular Dose (MGD) Real Breast Energy Deposited: Glandular Tissue Directly measured? Monte Carlo simulation Skin Glandular Tissue Adipose Tissue

  6. Mean Glandular Dose (MGD) Parameters to consider... • X-ray spectrum; • Geometric Model; Previous Estimations: • Breast Thickness; • Breast Composition ( 𝑔 𝑕 ); • 5 mm Adipose Tissue ( Dance 1990) • Skin Model? • 4 mm Skin Tissue (Wu 1991/Boone 1999) 64% thinner Credits: Boone & Hernandez 2016, AAPM. “ Changing Perceptions and Updated Methods for Mammography Dosimetry ” Current Measures: Using breast-CT: ≈1.44 mm ( Vedantham et al 2012) ≈ 1.45 mm (Huang et al 2008); 6 + adipose layer

  7. Objectives Study the impact of skin models on Mean Glandular Dose in Digital Mammography Adapt MC • Geometry Code • MGD calculus Analysis • MGD X Skin Models 7

  8. Outline • Mammography • Dosimetry – Mean Glandular Dose Motivation • Implemented Models • How? Methodology • MGD vs Skin Model • Differences Results • Summary Conclusions 8

  9. Methodology Monte Carlo code: • PENELOPE (2014) + penEasy (2015) Beam Parameters: • Monoenergetic (8 – 60 keV) • Polyenergetic (22 – 35 kV): • Mo (Mo-Rh) • Rh (Rh) • W (Rh-Al-Ag) *X-ray spectra from Hernandez et al (2014) 9

  10. Methodology Breast Model* • t = 2 cm – 8 cm • Glandularity ( 𝑔 𝑕 ) = 1%-100% 10 *Compositions from Hammerstein et al 1979

  11. Methodology Breast Model* • t = 2 cm – 8 cm • Glandularity ( 𝑔 𝑕 ) = 1%-100% Skin shielding Models I. 5 mm adipose; II. 4 mm skin; III. 1,45 mm skin; IV. 1,45 mm skin + 2 mm adipose; V. 1,45 mm skin + 3,55 mm adipose; 11 *Compositions from Hammerstein et al 1979

  12. Mean Glandular Dose (MGD) Monte Carlo Simulations How do we separate the deposited energy between tissues? penEasy: 𝐹 𝑏𝑤𝑕 Skin Homogeneous Glandular- Adipose Tissue Mixture Adipose Tissue 12

  13. Mean Glandular Dose (MGD) MGD Weighing method (Dance 1990) Interaction (I) Simulation Ends: Simulation starts: Type Return 𝐹 𝑕𝑚𝑏𝑜𝑒 𝐹 𝑕𝑚𝑏𝑜𝑒 =0 (III) Incoherent Photoelectric 𝐹 𝑕𝑚𝑏𝑜𝑒 MGD = 𝑁𝑏𝑡𝑡 × 𝑔 𝑕 (II) 𝑁𝐻𝐸 nMGD = 𝐿 𝑏𝑗𝑠 13

  14. Code modifications... Dosimetry 𝑁𝐻𝐸 nMGD = 𝐿 𝑏𝑗𝑠 Air Kerma from Primary MGD Photons 14 ~40.000 simulations

  15. Automatization with Python™ Windows/Linux full compatibility User Input Python Parallel Simulations Script • Mono/Poly; • Energy Range/Anode Filter; • Breast Thickness range; List of Simulations • Breast Composition; • Skin Model; • Detector Type; PENELOPE • Antiscatter Grid Model; • etc ~40.000 simulations Data Collection Python and saving Return Data 15

  16. Automatization with Python™ 3-10 min/simulation – Uncertainty (1  - 0.25%) Processor i7 7700 3.6 Ghz 16

  17. Outline • Mammography • Dosimetry – Mean Glandular Dose Motivation • Implemented Models • How? Methodology • MGD vs Skin Model • Differences Results • Summary Conclusions 17

  18. Results - Code Validation AAPM – Report 195 (2015) <1% 18

  19. Results - Code Validation <4% Sarno et al 2016 - PMB • 5 cm thick; • 20% 𝑔 𝑕 ; • 1.45 mm skin; 19

  20. Results: Skin shielding models Monoenergetic Beam 1% 𝑔 100% 𝑔 𝑕 𝑕 20 20

  21. Results: Skin shielding models Monoenergetic Beam – Depth Dose 18 keV 20% 𝑔 𝑕 2 cm breast 8 cm breast 21

  22. Results: Skin shielding models Polyenergetic Beam 20% 𝑔 𝑕 2 cm 8 cm 16% 15% 36% 34% 22

  23. Results: Skin shielding models Mo/Mo 28 kV Polyenergetic Beam 2 cm breast 21% 23% 23

  24. Results: Skin shielding models Mo/Mo 28 kV Polyenergetic Beam 1% 𝑔 𝑕 21% 24 17%

  25. Results: Summary Polyenergetic Beam – Skin Models 25

  26. Outline • Mammography • Dosimetry – Mean Glandular Dose Motivation • Implemented Models • How? Methodology • MGD vs Skin Model • Differences Results • Summary Conclusions 26

  27. Conclusions • The Skin Model has a significant impact on MGD estimates; • Skin model affects the MGD up to 37%; • Larger variations: low energies; high glandularity, thin breasts Depth Dose : skin attenuation and Homogeneous Mixture Volume MGD Variation Skin • Reduce the uncertanties; Model 𝑔 𝑕 (≈50%) • Patient-specific dosimetry; Breast (≈40%) Thickness • Heterogeneous breast (≈350%) Tube Potential Anode/Filter (≈130%) (≈90%) 27

  28. Acknowledgement 28 • Process 2016/15366-9 Process 2015/21873-8 • • Process 483170/2015-3 Lab Members and Alumni Collaborators José Maria Rodrigo T . Massera Bruno L. Rodrigues Fernandez-Varea

  29. Our Institution Funded in 1966 Credits: Lucas Rodolfo de Castro Moura - 29 http://www.lrdronecampinas.com.br/ University of Campinas (UNICAMP): 1st in Latin America

  30. Thank You! atomal@ifi.unicamp.br rmassera@ifi.unicamp.br Rodrigo T . Massera MSc Student IFGW - UNICAMP 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend