self gravitating fluid tori with charge
play

Self-gravitating fluid tori with charge V. Karas 1 , A.Trova 2 , J. - PowerPoint PPT Presentation

Introduction Assumptions and the model A scheme to find analytical solutions Summary Self-gravitating fluid tori with charge V. Karas 1 , A.Trova 2 , J. Kov r 3 , & P. Slan y 3 a 1 Astronomical Institute, Czech Academy of Sciences,


  1. Introduction Assumptions and the model A scheme to find analytical solutions Summary Self-gravitating fluid tori with charge V. Karas 1 , A.Trova 2 , J. Kov´ r 3 , & P. Slan´ y 3 aˇ 1 Astronomical Institute, Czech Academy of Sciences, Prague, Czech Republic 2 ZARM – Centre of Applied Space Technology and Microgravity, University of Bremen, Germany 3 Faculty of Philosophy and Science, Silesian University in Opava, Czech Republic From the Dolomites to the event horizon: sledging down the black hole potential well Sexten Center for Astrophysics, 10–14 July 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Karas, A.Trova, J. Kov´ aˇ r, & P. Slan´ y Centro per l’Astrofisica di Sesto, 2017 Self-gravitating fluid tori with charge

  2. Introduction Assumptions and the model A scheme to find analytical solutions Summary Introduction 1 Self-gravity is important in AGN accretion disks Large-scale magnetic fields play a role (B-Z and B-P mechanisms) Assumptions and the model 2 Solving Euler’s equation Self-gravitational potential – technicalities A scheme to find analytical solutions 3 Conditions for the existence of solutions Solutions Summary 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Karas, A.Trova, J. Kov´ aˇ r, & P. Slan´ y Centro per l’Astrofisica di Sesto, 2017 Self-gravitating fluid tori with charge

  3. Introduction Assumptions and the model A scheme to find analytical solutions Summary Nuclei of galaxies: dusty tori and a central SMBH ( M ∼ 10 6 –10 9 M ⊙ ) . At distance of a few × 10 3 self-gravity starts operating (Collin & Hure 2001; Karas et al. 2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Karas, A.Trova, J. Kov´ aˇ r, & P. Slan´ y Centro per l’Astrofisica di Sesto, 2017 Self-gravitating fluid tori with charge

  4. Introduction Assumptions and the model A scheme to find analytical solutions Summary Forces in presence axis of compact object-magnetic field symmetry (Compact object polar axis) The gravitational force of the central mass The self-gravitational force of the torus itself (Toomre criterion) The pressure of the fluid Compact Object The magnetic force The centrifugal force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Karas, A.Trova, J. Kov´ aˇ r, & P. Slan´ y Centro per l’Astrofisica di Sesto, 2017 Self-gravitating fluid tori with charge

  5. Introduction Assumptions and the model A scheme to find analytical solutions Summary Solving Euler’s equation Rotating magnetized torus – w/ a central body, w/ charge density of the fluid Euler’s equation ρ m ( ∂ t v i + v j ∇ j v i ) = −∇ i P − ρ m ∇ i Ψ + ρ e ( E i + ϵ ijk v j B k ) , (1) . . . . . . . . . . . . . . . . . . . . Slan´ y et al (2013) . . . . . . . . . . . . . . . . . . . . V. Karas, A.Trova, J. Kov´ aˇ r, & P. Slan´ y Centro per l’Astrofisica di Sesto, 2017 Self-gravitating fluid tori with charge

  6. Introduction Assumptions and the model A scheme to find analytical solutions Summary Solving Euler’s equation Euler’s equation ∇ P = − ρ m ∇ Φ − ρ m ∇ Ψ − ρ m ∇M (2) Integrability conditions → constraints on the spatial distribution of charge, and the corresponding angular momentum profile Orbital velocity: a power law of the radius Different distribution of the specific charge density Equilibrium solution → maxima for the pressure function → angular momentum distribution, strength of the magnetic field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Karas, A.Trova, J. Kov´ aˇ r, & P. Slan´ y Centro per l’Astrofisica di Sesto, 2017 Self-gravitating fluid tori with charge

  7. Introduction Assumptions and the model A scheme to find analytical solutions Summary Solving Euler’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Karas, A.Trova, J. Kov´ aˇ r, & P. Slan´ y Centro per l’Astrofisica di Sesto, 2017 Self-gravitating fluid tori with charge

  8. Introduction Assumptions and the model A scheme to find analytical solutions Summary Solving Euler’s equation Symmetries: (i) axial, (ii) with respect to the mid-plane. The fluid is incompressible, ρ m = const The integrability condition of the Euler equation → two unknown functions: the orbital velocity v φ ( R , Z ), i.e. the way of rotation of the fluid, and the specific charge q ( R , Z ). The fluid is embedded in an external magnetic field The torus is self-gravitating, ∇ P = − ρ m Φ − ρ m ∇ Ψ − ρ m ∇ Ψ Sg − ρ m ∇M (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Karas, A.Trova, J. Kov´ aˇ r, & P. Slan´ y Centro per l’Astrofisica di Sesto, 2017 Self-gravitating fluid tori with charge

  9. Introduction Assumptions and the model A scheme to find analytical solutions Summary Self-gravitational potential – technicalities Ψ Sg is approximated by the gravitational potential of a loop in the equatorial plane (mass m centred on the axis and located in the maximum of pressure; Durand et al 1964): √ r c Ψ Sg ∼ − Gm R kK ( k ) , (4) r c π with 2 √ r c R k = ( r c + R ) 2 + Z 2 . (5) √ Drawback → K diverges when its modulus k = 1 (i.e when the field point ( R , Z ) coincides with the loop radius). To avoid this singularity we add a (small) smoothing parameter λ to the modulus k , 2 √ r c R 2 √ r c R (6) ( r c + R ) 2 + Z 2 → ( r c + R ) 2 + Z 2 + λ 2 √ √ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Karas, A.Trova, J. Kov´ aˇ r, & P. Slan´ y Centro per l’Astrofisica di Sesto, 2017 Self-gravitating fluid tori with charge

  10. Introduction Assumptions and the model A scheme to find analytical solutions Summary Conditions for the existence of solutions Final equation aH + d t Ψ Sg + Ψ + b Φ + e M = Const , (7) Contraints given by the integrability conditions Solutions exist if H -function has a maximum → conditions on the magnetic field (value of e ) and rotation (value of b ). We have to choose a configuration: constant angular momentum vs. rigid rotation specific charge distribution within the torus strength of self-gravity (value of d t ≡ m / M ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Karas, A.Trova, J. Kov´ aˇ r, & P. Slan´ y Centro per l’Astrofisica di Sesto, 2017 Self-gravitating fluid tori with charge

  11. Introduction Assumptions and the model A scheme to find analytical solutions Summary Solutions Maps of enthalpy: choose a maximum of pressure and the b-constant → we obtain H-function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Karas, A.Trova, J. Kov´ aˇ r, & P. Slan´ y Centro per l’Astrofisica di Sesto, 2017 Self-gravitating fluid tori with charge

  12. Introduction Assumptions and the model A scheme to find analytical solutions Summary Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Karas, A.Trova, J. Kov´ aˇ r, & P. Slan´ y Centro per l’Astrofisica di Sesto, 2017 Self-gravitating fluid tori with charge

  13. Introduction Assumptions and the model A scheme to find analytical solutions Summary Summary The condition of existence of the tori changes with the strength of self-gravity. We found equilibrium solution in rigid rotation. Similar morphology as in the non-selfgravitating case: we find the toroidal configuration, the closed isobars with cusps, and the toroidal off-equatorial configurations. The maximum of pressure rises with the value of d t and the torus becomes thicker. The closed analytical form provides a way to set constraints on the existence of different configurations. Reference: Trova A. et al. (2016), ApJSS, 226, id. 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Karas, A.Trova, J. Kov´ aˇ r, & P. Slan´ y Centro per l’Astrofisica di Sesto, 2017 Self-gravitating fluid tori with charge

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend