saturation of the f mode instability
play

Saturation of the f -mode instability in neutron stars Pantelis - PowerPoint PPT Presentation

Saturation of the f -mode instability in neutron stars Pantelis Pnigouras in collab. with K. D. Kokkotas 28th Texas Symposium on Relativistic Astrophysics Geneva, 17.12.2015 Outline 1 Oscillation modes 2 The CFS instability The instability


  1. Saturation of the f -mode instability in neutron stars Pantelis Pnigouras in collab. with K. D. Kokkotas 28th Texas Symposium on Relativistic Astrophysics Geneva, 17.12.2015

  2. Outline 1 Oscillation modes 2 The CFS instability The instability window 3 Instability saturation Non-linear mode coupling Parametric resonance Saturation conditions 4 Results Supernova-derived neutron stars Merger-derived neutron stars Stochastic background

  3. Oscillation modes ∞ l ∑ ∑ [ U m l ( r ) Y m e r + V m ( r ) ∇ Y m ( θ, φ ) + W m e r × ∇ Y m ξ ( r, θ, φ ) = ( θ, φ )ˆ l ( r )ˆ ( θ, φ )] l l l l l =0 m = − l W m • Polar modes: = 0 l as Ω → 0 U m = V m • Axial modes: = 0 l l l : degree m : order n : overtone Mode name Mode class Mode type Restoring force p -mode Polar Sound wave ( ω → ∞ as n → ∞ ) Pressure gradient } Low- ω sound wave f -mode Polar n = 0 High- ω gravity wave Buoyancy g -mode Polar Gravity wave ( ω → 0 as n → ∞ ) r -mode Axial Inertial wave Coriolis Hybrid mode Combination Zero-buoyancy limit or r - and g -modes • Only for non-zero rotation • Only for non-zero buoyancy 1 / 11

  4. Oscillation modes ∞ l ∑ ∑ [ U m l ( r ) Y m e r + V m ( r ) ∇ Y m ( θ, φ ) + W m e r × ∇ Y m ξ ( r, θ, φ ) = ( θ, φ )ˆ l ( r )ˆ ( θ, φ )] l l l l l =0 m = − l 10 n W m • Polar modes: = 0 l as Ω → 0 U m = V m • Axial modes: = 0 1 l l ˜ ω l : degree n m : order 0.1 n : overtone p f g 2 3 4 5 6 7 8 9 10 11 l Mode name Mode class Mode type Restoring force p -mode Polar Sound wave ( ω → ∞ as n → ∞ ) Pressure gradient Low- ω sound wave } f -mode Polar n = 0 High- ω gravity wave Buoyancy g -mode Polar Gravity wave ( ω → 0 as n → ∞ ) r -mode Axial Inertial wave Coriolis Hybrid mode Combination Zero-buoyancy limit or r - and g -modes • Only for non-zero rotation • Only for non-zero buoyancy 1 / 11

  5. The CFS instability Chandrasekhar (1970) first realised its existence for Maclaurin spheroids Friedman and Schutz (1978) proved that the instability is generic For any angular velocity Ω there is always a mode driven unstable by GW emission Multipole expansion of power radiated in GWs (Thorne, 1980): ( d E ∞ ) l | 2 + | δJ m N l ω ( ω − m Ω) 2 l +1 ( l | 2 ) ∑ | δD m = − d t GW l ≥ 2 ◦ If ω ( ω − m Ω) < 0, then (d E/ d t ) GW > 0 ◦ Polar (axial) modes emit through the mass (current) multipoles ◦ Most susceptible to the CFS instability are the f -modes and r -modes Octupole ( l = m = 3) f -mode [left, credit: Wolfgang ohler, GFZ Potsdam ] and K¨ r -mode [right, credit: Saio (1982) ]; density and velocity perturbations dominate, respectively. 2 / 11

  6. The CFS instability – The instability window The instability is suppressed by viscosity (Ipser and Lindblom, 1991) ( d E ( d E ) ) Instability window : + > 0 d t d t GW V 1.00 Instability windows of the quadrupole, octupole, and Shear 0.98 hexadecapole f -modes, for a viscosity Newtonian star with p ∝ ρ 3 . ∼ T - 2 Ω / Ω K 0.96 Shear viscosity, due to particle l = m = 2 scattering, and bulk viscosity, Bulk viscosity 0.94 due to disturbance of l = m = 3 ∼ T 6 β -equilibrium by the l = m = 4 perturbation, dominate at low 0.92 and high temperatures, respectively. 10 8 10 9 10 10 T ( K ) ◦ The r -mode instability is favoured, because of i) much larger window, and ii) shorter growth time scales ◦ Significance : → Neutron star evolution [nascent (Bondarescu et al., 2009; Passamonti et al., 2013), LMXBs (Levin, 1999; Bondarescu et al., 2007)] → Gravitational wave asteroseismology (Andersson and Kokkotas, 1996, 1998) 3 / 11

  7. Instability saturation – Mode coupling Non-linear mode coupling stops instability’s growth (Dziembowski, 1982) Linear amplitude evolution: ˙ Q α = γ α Q α 4 / 11

  8. Instability saturation – Mode coupling Non-linear mode coupling stops instability’s growth (Dziembowski, 1982) Quadratic amplitude evolution:  ˙ Q α = γ α Q α + iω α H Q β Q γ e − i ∆ ωt    Modes couple  ˙ Q β = γ β Q β + iω β H Q ∗ γ Q α e i ∆ ωt in triplets   Q γ = γ γ Q γ + iω γ H Q α Q ∗ ˙ β e i ∆ ωt   4 / 11

  9. Instability saturation – Mode coupling Non-linear mode coupling stops instability’s growth (Dziembowski, 1982) Quadratic amplitude evolution:  ˙ Q α = γ α Q α + iω α H Q β Q γ e − i ∆ ωt    Modes couple  ˙ Q β = γ β Q β + iω β H Q ∗ γ Q α e i ∆ ωt in triplets   Q γ = γ γ Q γ + iω γ H Q α Q ∗ ˙ β e i ∆ ωt   ◦ Detuning ∆ ω ≡ ω α − ω β − ω γ ≈ 0 resonance condition 4 / 11

  10. Instability saturation – Mode coupling Non-linear mode coupling stops instability’s growth (Dziembowski, 1982) Quadratic amplitude evolution:  ˙ Q α = γ α Q α + iω α H Q β Q γ e − i ∆ ωt    Modes couple  ˙ Q β = γ β Q β + iω β H Q ∗ γ Q α e i ∆ ωt in triplets   Q γ = γ γ Q γ + iω γ H Q α Q ∗ ˙ β e i ∆ ωt   ◦ Detuning ∆ ω ≡ ω α − ω β − ω γ ≈ 0 resonance condition ◦ Coupling coefficient H ̸ = 0 if m α = m β + m γ    l α + l β + l γ = even number coupling selection rules  | l β − l γ | ≤ l α ≤ l β + l γ  4 / 11

  11. Instability saturation – Mode coupling Non-linear mode coupling stops instability’s growth (Dziembowski, 1982) Quadratic amplitude evolution:  ˙ Q α = γ α Q α + iω α H Q β Q γ e − i ∆ ωt    Modes couple  ˙ Q β = γ β Q β + iω β H Q ∗ γ Q α e i ∆ ωt in triplets   Q γ = γ γ Q γ + iω γ H Q α Q ∗ ˙ β e i ∆ ωt   ◦ Detuning ∆ ω ≡ ω α − ω β − ω γ ≈ 0 resonance condition ◦ Coupling coefficient H ̸ = 0 if m α = m β + m γ    l α + l β + l γ = even number coupling selection rules  | l β − l γ | ≤ l α ≤ l β + l γ  1 d E i ◦ Growth/damping rates γ i = ≷ 0 2 E i d t ( d E ( d E d E ) ) d t = + ≷ 0 d t d t GW V 4 / 11

  12. Instability saturation – Parametric resonance Q α = γ α Q α + iω α H Q β Q γ e − i ∆ ωt ˙ Detuning ∆ ω Q β = γ β Q β + iω β H Q ∗ ˙ γ Q α e i ∆ ωt Coupling coefficient H Q γ = γ γ Q γ + iω γ H Q α Q ∗ ˙ β e i ∆ ωt Growth/damping rates γ i (Schenk et al., 2001; Parent mode: unstable r -mode ( γ α > 0) Morsink, 2002; Arras et al., 2003; Brink et al., Daughter modes: other (stable) axial modes ( γ β,γ < 0) 2004, 2005) 5 / 11

  13. Instability saturation – Parametric resonance Q α = γ α Q α + iω α H Q β Q γ e − i ∆ ωt ˙ Detuning ∆ ω Q β = γ β Q β + iω β H Q ∗ ˙ γ Q α e i ∆ ωt Coupling coefficient H Q γ = γ γ Q γ + iω γ H Q α Q ∗ ˙ β e i ∆ ωt Growth/damping rates γ i Parent mode: unstable f -mode ( γ α > 0) (PP and Kokkotas, 2015) Daughter modes: other (stable) polar modes ( γ β,γ < 0) 5 / 11

  14. Instability saturation – Parametric resonance Q α = γ α Q α + iω α H Q β Q γ e − i ∆ ωt ˙ Detuning ∆ ω Q β = γ β Q β + iω β H Q ∗ ˙ γ Q α e i ∆ ωt Coupling coefficient H Q γ = γ γ Q γ + iω γ H Q α Q ∗ ˙ β e i ∆ ωt Growth/damping rates γ i Parent mode: unstable f -mode ( γ α > 0) (PP and Kokkotas, 2015) Daughter modes: other (stable) polar modes ( γ β,γ < 0) No mode coupling: H = 0 or ∆ ω ≫ 0 α ◦ Modes evolve independently ◦ No non-linear interaction | Q | ˙ Q α = γ α Q α γ ˙ Q β = γ β Q β β ˙ Q γ = γ γ Q γ t 5 / 11

  15. β α γ Instability saturation – Parametric resonance Q α = γ α Q α + iω α H Q β Q γ e − i ∆ ωt ˙ Detuning ∆ ω Q β = γ β Q β + iω β H Q ∗ ˙ γ Q α e i ∆ ωt Coupling coefficient H Q γ = γ γ Q γ + iω γ H Q α Q ∗ ˙ β e i ∆ ωt Growth/damping rates γ i Parent mode: unstable f -mode ( γ α > 0) (PP and Kokkotas, 2015) Daughter modes: other (stable) polar modes ( γ β,γ < 0) Parametric resonance: H ̸ = 0 and ∆ ω ≈ 0 | Q PT | ◦ Parent feeds daughters and makes them grow ◦ Parametric threshold: daughters grow when ) 2 ] [ ( γ β γ γ ∆ ω | Q | | Q α | 2 > | Q PT | 2 ≡ 1 + ω β ω γ H 2 γ β + γ γ ◦ | Q sat | ≈ | Q PT | α t PT t 5 / 11

  16. γ α β Instability saturation – Saturation conditions ˙ Q α = γ α Q α + iω α H Q β Q γ e − i ∆ ωt γ α > 0 , γ β,γ < 0 Detuning ∆ ω Q β = γ β Q β + iω β H Q ∗ ˙ γ Q α e i ∆ ωt [ ) 2 ] Coupling coefficient H γ β γ γ ( ∆ ω | Q PT | 2 ≡ 1 + ˙ Q γ = γ γ Q γ + iω γ H Q α Q ∗ β e i ∆ ωt ω β ω γ H 2 γ β + γ γ Growth/damping rates γ i Saturation successful if: | γ β + γ γ | ≳ γ α and ∆ ω ≳ | γ α + γ β + γ γ | Saturation successful Saturation unsuccessful | Q PT | | Q PT | | Q | | Q | t PT t PT t t 6 / 11

  17. Results – Supernova-derived neutron stars Saturation amplitude throughout the instability window (PP and Kokkotas, in prep.)  Q  PT 10 - 5 10 - 6 10 - 7 10 - 8 Model: M = 1 . 4 M ⊙ , R = 10 km, p ∝ ρ 3 Units: E mode = | Q | 2 Mc 2 { T − 1 , T ≲ 10 9 K | Q sat | ∝ for Ω = const . T ≳ 10 9 K T 3 , 7 / 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend