s as a state function note adiabatic d q 0 constant s if
play

S as a State Function Note: adiabatic ( d /Q = 0) constant S if the - PowerPoint PPT Presentation

ENTROPY AND THE 2nd LAW 2 1 2 1 T bath dS 1 dQ 1 / T bath dS 0 8.044 L10B1 S as a State Function Note: adiabatic ( d /Q = 0) constant S if the change is quasistatic. This is the origin of the sub- script S on the adiabatic


  1. ENTROPY AND THE 2nd LAW 2 1 2 1 T bath dS 1 ≥ dQ 1 / T bath dS ≥ 0 8.044 L10B1

  2. S as a State Function Note: adiabatic ( ≡ d /Q = 0) ⇒ constant S if the change is quasistatic. This is the origin of the sub- script S on the adiabatic compressibility. 1 ∂V 1 ∂V κ T ≡ − κ S ≡ − V ∂P V ∂P T S 8.044 L1 0 B2

  3. Example A Hydrostatic System ∂S ∂S dS = dT + by expansion dV ∂T ∂V V T 1 P = dU + dV from dU = TdS − PdV T T 1 ∂U 1 ∂U = dT + + P dV T ∂T T ∂V V T by expansion of U But the cross derivatives of S must be equal. 8.044 L1 0 B3

  4. 1 ∂ 2 U ∂ 1 ∂U = ∂V T ∂T T ∂V ∂T V T 1 ∂ 2 U 1 1 1 ∂P ∂ ∂U ∂U + P = − + P + + T 2 ∂T T ∂V ∂V T ∂V ∂T T ∂T T T V V Equating these two expressions gives ∂U ∂P + P = T ∂V ∂T T V ∂U ∂P = T − P ∂V ∂T T V New Information! Does not contain S ! 8.044 L1 0 B4

  5. CONSEQUENCES a) γ ∂U ∂U /Q = dU + d PdV = dT + + P dV ∂T ∂V V T ' V. ' V. C V ∂P T ∂T V d /Q ∂P ∂V ≡ C P = C V + T dT ∂T ∂T V P P ' V. αV 1 ∂V 1 ∂V Use α ≡ and κ T ≡ − . V ∂T V ∂P P T 8.044 L1 0 B5

  6. ∂V ( − 1) ∂P − 1 α ∂T P = = = ∂T ∂V ∂V ∂T κ T V ∂V ∂P ∂P P T T Tα 2 V Tα 2 V   α C P − C V = T αV = → γ − 1 =   κ T κ T κ T C V For an ideal gas PV = NkT ⇒ α = 1 /T and κ T = 1 /P . Thus V/T C P − C V = = Nk 1 /P This holds for polyatomic as well as monatomic gases. 8.044 L1 0 B6

  7. CONSEQUENCES b) Ideal Gas: C V NkT ∂U Nk P = = T − P = P − P = 0 V ∂V V T ∂U ∂U dU = dT + dV = C V dT ∂T ∂V V T ' V. ' V. 0 C V T � C V ( T � , V ) dT � + constant U = 0 ( ∂U/∂V ) T = 0 for all T � C V is not f ( V ); C V = C V ( T ). 8.044 L1 0 B7

  8. CONSEQUENCES c) Ideal Gas: S ∂S ∂S dS = dT + dV ∂T ∂V V T d /Q ∂S /Q = TdS d ≡ C V = T dT ∂T V V dU P dU = TdS − PdV ⇒ dS = + dV T T ∂S 1 ∂U P = + . ∂V T ∂V T T T -1L - 1L Nk/V 0 8.044 L1 0 B8

  9. C V ( T ) Nk dS = dT + dV T V T C V ( T � ) V dT � + S ( T, V ) = Nk ln( ) + S ( T 0 , V 0 ) T 0 T � V 0 For a monatomic gas C V = (3 / 2) Nk . T V S ( T, V ) − S ( T 0 , V 0 ) = (3 / 2) Nk ln( ) + Nk ln( ) T 0 V 0    3 / 2  V T = Nk ln       V 0 T 0 8.044 L1 0 B9

  10.  V T 3 / 2          V 2 / 3 T   isentropic (adiabatic) ⇒ are constant      V 5 / 3 P     8.044 L1 0 B10

  11. Maxwell Relations ∂E ∂E dE ( S, V ) = dS + dV expansion ∂S ∂V V S 1 st and 2 nd laws = TdS − PdV ∂T ∂P = − ⇒ ∂V ∂S S V 8.044 L1 0 B1 1

  12. ∂T ∂ F dE ( S, L ) = TdS + = F dL ⇒ ∂L S ∂S L ∂T ∂H dE ( S, M ) = TdS + = HdM ⇒ ∂M ∂S S M Observe: d ( TS ) = TdS + SdT d ( PV ) = PdV + V dP 8.044 L1 0 B 1 2

  13. F ≡ E − TS Helmholtz Free Energy ∂S ∂P dF = − SdT − PdV = ⇒ ∂V ∂T T V H ≡ E + PV Enthalpy ∂T ∂V dH = TdS + V dP = ⇒ ∂P ∂S S P 8.044 L1 0 B 1 3

  14. G ≡ E + PV − TS Gibbs Free Energy ∂S ∂V dG = − SdT + V dP ⇒ = − ∂P ∂T T P E , F , H and G are called ”thermodynamic potentials”. 8.044 L1 0 B 1 4

  15. The Magic Square Mnemonic x -V E F dE = TdS + Xdx S -T ∂S ∂V ( − 1) = ( − 1)( − 1) ∂P ∂T ' V. T P H P G (+1) X 8.044 L1 0 B 1 5

  16. MIT OpenCourseWare http://ocw.mit.edu 8.044 Statistical Physics I Spring 2013 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend