adiabatic evolution and dephasing
play

Adiabatic evolution and dephasing Gian Michele Graf ETH Zurich - PowerPoint PPT Presentation

Adiabatic evolution and dephasing Gian Michele Graf ETH Zurich November 30, 2010 Open Quantum Systems Grenoble Outline The Landau-Zener model An adiabatic theorem Optimal parametrization Linear response theory and geometry Collaborators:


  1. Adiabatic evolution and dephasing Gian Michele Graf ETH Zurich November 30, 2010 Open Quantum Systems Grenoble

  2. Outline The Landau-Zener model An adiabatic theorem Optimal parametrization Linear response theory and geometry Collaborators: Y. Avron, M. Fraas, P . Grech, O.Kenneth

  3. Outline The Landau-Zener model An adiabatic theorem Optimal parametrization Linear response theory and geometry

  4. A motivating example: Landau-Zener tunnelling The Hamiltonian case H ( s ) = 1 x · � x ( s ) = ( s , 0 , ∆)) on C 2 2 � ( � σ x | x | = | � 2 P + − | � 2 P − σ ( H ( s )) e + ( s ) ◮ eigenvalues e ± ( s ) = ±| � x ( s ) | / 2 s ◮ eigenprojections ∆ P ± ( s ) → ( 1 ± σ x ) / 2 , ( s → ±∞ ) e − ( s ) H ( s ) is general form of single-parameter avoided crossing

  5. Landau-Zener: Hamiltonian case (cont.) ◮ scaled time s = ε t : i d ψ dt = H ( ε t ) ψ or ψ = H ( s ) ψ ( ˙ = d / ds ) i ε ˙ ◮ initial state: spin down ( ψ ( s ) , P + ( s ) ψ ( s )) → 0 ( s → −∞ ) ◮ tunnelling probability ( ψ ( s ) , P + ( s ) ψ ( s )) → T ( s → + ∞ ) ◮ Landau, Zener (1932) T = e − π ∆ 2 / 2 ε (exponentially small in ε → 0).

  6. Adiabatic tunnelling: Hamiltonian case More generally, let σ ( H ( s )) ◮ H ( s ) smooth e + ( s ) ◮ H ( s ) (or P ± ( s ) ) constant near s = ±∞ , e.g. at e − ( s ) s = s 0 , s 1 . s 0 s 1 s

  7. Adiabatic tunnelling: Hamiltonian case More generally, let σ ( H ( s )) ◮ H ( s ) smooth e + ( s ) ◮ H ( s ) (or P ± ( s ) ) constant near s = ±∞ , e.g. at e − ( s ) s = s 0 , s 1 . s 0 s 1 s Then: ◮ T ( s , s 0 ) = O ( ε 2 ) ( s generic) At intermediate times s , “down” state contains a coherent admixture O ( ε ) of the “up” state. ◮ T ( s 1 , s 0 ) = O ( ε n ) ( n = 1 , 2 , . . . )

  8. Adiabatic tunnelling: Hamiltonian case More generally, let σ ( H ( s )) ◮ H ( s ) smooth e + ( s ) ◮ H ( s ) (or P ± ( s ) ) constant near s = ±∞ , e.g. at e − ( s ) s = s 0 , s 1 . s 0 s 1 s Then: ◮ T ( s , s 0 ) = O ( ε 2 ) ( s generic) At intermediate times s , “down” state contains a coherent admixture O ( ε ) of the “up” state. ◮ T ( s 1 , s 0 ) = O ( ε n ) ( n = 1 , 2 , . . . ) Essentially no memory is retained at the end: tunnelling is reversible.

  9. Lindblad evolution System coupled to Bath: Evolution of a mixed state ρ = ρ S U t ( ρ ⊗ ρ B ) U ∗ � � ρ �→ φ t ( ρ ) = tr B t with joint unitary evolution U t ( U t + s = U t U s ) Properties: ◮ tr φ t ( ρ ) = tr ρ ◮ φ t completely positive ◮ φ t + s = φ t ◦ φ s ◮ approximately, if time scales of Bath ≪ time scales of System ◮ exactly, if bath is white noise Generator: L := d φ t � dt t = 0 � Theorem (Lindblad, Sudarshan-Kossakowski-Gorini 1976) The general form of the generator is L ( ρ ) = − i [ H , ρ ] + 1 � ( 2 Γ α ρ Γ ∗ α − Γ ∗ α Γ α ρ − ρ Γ ∗ α Γ α ) 2 α

  10. Dephasing Lindbladians L ( ρ ) = − i [ H , ρ ] + 1 � ( 2 Γ α ρ Γ ∗ α − Γ ∗ α Γ α ρ − ρ Γ ∗ α Γ α ) 2 α with [Γ α , P i ] = 0 for H = e i P i � i Then L ( P i ) = 0, resp. φ t ( P i ) = P i : Like in the Hamiltonian case, eigenstates P i are invariant. Example: 2-level system L ( ρ ) = − i [ H , ρ ] − γ ( P − ρ P + + P + ρ P − ) ( γ ≥ 0 ) Evolution turns coherent into incoherent superpositions within a time ∼ γ − 1 . Is a model for measurement of H . Application: Nuclear magnetic resonance

  11. Dephasing 2-level Lindbladian L ( s )( ρ ) = − i [ H ( s ) , ρ ] − γ ( s )( P − ( s ) ρ P + ( s ) + P + ( s ) ρ P − ( s )) with ◮ H ( s ) = � x ( s ) · � σ/ 2 ◮ γ ( s ) ≥ 0 x ( s ) with ˙ x ( s ) → ˙ x ( ±∞ ) , ( s → ±∞ ). ◮ � � � Lindblad equation for ρ = ρ ( s ) ρ = L ( s )( ρ ) ε ˙ Result � ∞ γ ( s ) � ˙ T = ε P − ( s ) 2 � ds + O ( ε 2 ) x ( s ) 2 + γ ( s ) 2 tr � −∞ Tunnelling has memory and is irreversible.

  12. Dephasing Landau-Zener Lindbladian x ( s ) = ( s , 0 , ∆) : � � ˙ = ∆ 2 P − ( s ) 2 � tr x 4 2 � For γ ( s ) constant: T = πε 4 ∆ 2 Q ( γ/ ∆) + O ( ε 2 ) √ x ( 2 + 1 + x 2 ) Q ( x ) = π √ √ 1 + x 2 ( 1 + x 2 + 1 ) 2 2 0.7 Q(x) 0.6 0.5 0.4 0.3 0.2 0.1 0 0 1 2 3 4 5 Figure: The function Q ( x ) . It has a maximum at x = 1 . 13693

  13. Dephasing Landau-Zener Lindbladian x ( s ) = ( s , 0 , ∆) : � � ˙ = ∆ 2 P − ( s ) 2 � tr x 4 2 � For γ ( s ) constant: T = πε 4 ∆ 2 Q ( γ/ ∆) + O ( ε 2 ) √ x ( 2 + 1 + x 2 ) Q ( x ) = π √ √ 1 + x 2 ( 1 + x 2 + 1 ) 2 2 0.7 Q(x) 0.6 0.5 linear at small γ 0.4 0.3 0.2 0.1 0 0 1 2 3 4 5 Figure: The function Q ( x ) . It has a maximum at x = 1 . 13693

  14. Dephasing Landau-Zener Lindbladian x ( s ) = ( s , 0 , ∆) : � � ˙ = ∆ 2 P − ( s ) 2 � tr x 4 2 � For γ ( s ) constant: T = πε 4 ∆ 2 Q ( γ/ ∆) + O ( ε 2 ) √ x ( 2 + 1 + x 2 ) Q ( x ) = π √ √ 1 + x 2 ( 1 + x 2 + 1 ) 2 2 0.7 Q(x) 0.6 0.5 linear at small γ Zeno effect at large γ 0.4 0.3 0.2 0.1 0 0 1 2 3 4 5 Figure: The function Q ( x ) . It has a maximum at x = 1 . 13693

  15. Outline The Landau-Zener model An adiabatic theorem Optimal parametrization Linear response theory and geometry

  16. A question Recall: ◮ Hamiltonian case → reversible tunnelling, oblivion ◮ Deph. Lindbladian case → irreversible tunnelling, memory

  17. A question Recall: ◮ Hamiltonian case → reversible tunnelling, oblivion ◮ Deph. Lindbladian case → irreversible tunnelling, memory Question: Is there a common point of view making this evident?

  18. The scheme Setup: ◮ V linear space, finite-dimensional. ◮ L ( s ) : V → V , x �→ L ( s ) x linear in x ∈ V , smooth in 0 ≤ s ≤ 1. Assumptions: ◮ 0 is an eigenvalue of L ( s ) , isolated uniformly in s . ◮ V = ker L ⊕ ran L . In particular: ◮ L is invertible on ran L : L − 1 ◮ 1 = P + Q (projections), x = a + b (decomposition) Evolution equation for x = x ( s ) : ε ˙ x = L ( s ) x Parallel transport T ( s , s ′ ) : V → V with ∂ ∂ sT ( s , s ′ ) = [ ˙ P ( s ) , P ( s )] T ( s , s ′ ) , T ( s ′ , s ′ ) = 1 implying P ( s ) T ( s , s ′ ) = T ( s , s ′ ) P ( s ′ )

  19. The theorem x = L ( s ) x admits solutions of the form i) ε ˙ N ε n ( a n ( s ) + b n ( s )) + ε N + 1 r N ( ε, s ) x ( s ) = � n = 0 with ◮ a n ( s ) ∈ ker L ( s ) , b n ( s ) ∈ ran L ( s ) ◮ a n ( 0 ) ∈ ker L ( 0 ) , r N ( ε, 0 ) ∈ V arbitrary ii) Coefficients ( n = 0 , 1 , . . . ): ◮ b 0 ( s ) = 0 � s ◮ a n ( s ) = T ( s , 0 ) a n ( 0 ) + 0 T ( s , s ′ ) ˙ P ( s ′ ) b n ( s ′ ) ds ′ ◮ b n + 1 ( s ) = L ( s ) − 1 ( ˙ P ( s ) a n ( s ) + Q ( s ) ˙ b n ( s )) iii) If L ( s ) generates a contraction semigroup, then r N ( ε, s ) is uniformly bounded in ε and in s , if so at s = 0

  20. A corollary Recall: ◮ b 0 ( s ) = 0 � s ◮ a n ( s ) = T ( s , 0 ) a n ( 0 ) + 0 T ( s , s ′ ) ˙ P ( s ′ ) b n ( s ′ ) ds ′ ◮ b n + 1 ( s ) = L ( s ) − 1 ( ˙ P ( s ) a n ( s ) + Q ( s ) ˙ b n ( s )) (Note: b 0 � a 0 � b 1 � a 1 . . . ) Corollary If P ( s ) is constant near s = s 0 , then b n ( s 0 ) = 0 , ( n = 0 , 1 , 2 , . . . )

  21. A corollary Recall: ◮ b 0 ( s ) = 0 � s ◮ a n ( s ) = T ( s , 0 ) a n ( 0 ) + 0 T ( s , s ′ ) ˙ P ( s ′ ) b n ( s ′ ) ds ′ ◮ b n + 1 ( s ) = L ( s ) − 1 ( ˙ P ( s ) a n ( s ) + Q ( s ) ˙ b n ( s )) (Note: b 0 � a 0 � b 1 � a 1 . . . ) Corollary If P ( s ) is constant near s = s 0 , then b n ( s 0 ) = 0 , ( n = 0 , 1 , 2 , . . . ) Answer: the a n ’s carry the memory, the b n ’s don’t.

  22. A corollary Recall: ◮ b 0 ( s ) = 0 � s ◮ a n ( s ) = T ( s , 0 ) a n ( 0 ) + 0 T ( s , s ′ ) ˙ P ( s ′ ) b n ( s ′ ) ds ′ ◮ b n + 1 ( s ) = L ( s ) − 1 ( ˙ P ( s ) a n ( s ) + Q ( s ) ˙ b n ( s )) (Note: b 0 � a 0 � b 1 � a 1 . . . ) Corollary If P ( s ) is constant near s = s 0 , then b n ( s 0 ) = 0 , ( n = 0 , 1 , 2 , . . . ) Answer: the a n ’s carry the memory, the b n ’s don’t. Next: One result, different applications.

  23. Appl. to Quantum Mechanics: Hamiltonian case V = H , x = ψ i ε ˙ ψ = H ( s ) ψ e ( s ) : isolated, simple eigenvalue of H ( s ) ψ ( s ) = ψ ( s ) exp ( i ε − 1 � s e ( s ′ ) ds ′ ) and rewrite Set ˜ ε ˙ ψ = − i ( H ( s ) − e ( s )) ˜ ˜ ψ ≡ L ( s ) ˜ ψ with 0 isolated, simple eigenvalue of L ( s ) .

  24. Appl. to Quantum Mechanics: Hamiltonian case V = H , x = ψ i ε ˙ ψ = H ( s ) ψ e ( s ) : isolated, simple eigenvalue of H ( s ) ψ ( s ) = ψ ( s ) exp ( i ε − 1 � s e ( s ′ ) ds ′ ) and rewrite Set ˜ ε ˙ ψ = − i ( H ( s ) − e ( s )) ˜ ˜ ψ ≡ L ( s ) ˜ ψ with 0 isolated, simple eigenvalue of L ( s ) . Tunnelling out of e ( s ) is motion out of ker L ( s ) . Hence reversible.

  25. Appl. to QM: Dephasing Lindbladian case V = { operators on H} , x = ρ , L ( s ) = L ( s ) For simplicity dim H = 2, hence dim V = 4. L ( ρ ) = − i [ H , ρ ] − γ ( P − ρ P + + P + ρ P − ) with γ ≥ 0 and H | ψ i � = e i | ψ i � , ( i = ± ) Basis of V : E ij = | ψ i �� ψ j | In particular, P i = E ii .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend