adiabatic passage and noise in quantum dots
play

Adiabatic Passage and Noise in Quantum Dots Sigmund Kohler - PowerPoint PPT Presentation

Adiabatic Passage and Noise in Quantum Dots Sigmund Kohler Instituto de Ciencia de Materiales de Madrid, CSIC 1 0 1 Adiabatic Passage and Noise 1 Steady-state transfer passage by adiabatic passage shot noise as signal 2


  1. Adiabatic Passage and Noise in Quantum Dots Sigmund Kohler Instituto de Ciencia de Materiales de Madrid, CSIC 1 0 1

  2. Adiabatic Passage and Noise 1 Steady-state transfer passage by adiabatic passage shot noise as signal 2 Landau-Zener-(Stückelberg-Majorana) interferometry background fluctuations probed via transport

  3. Adiabatic Passage and Noise Steady-state coherent transfer by adiabatic passage Ω 1 2 Ω 23 | 1 〉 | 2 〉 | 3 〉 Huneke, Platero, SK, PRL 110 , 036802 (2013)

  4. What is “coherent transfer by adiabatic passage” (CTAP)? ? electron transfer from dot 1 to dot 3 without occupying dot 2 Greentree et al. , PRB 2004 cf. STIRAP (stimulated Raman adiabatic passage)

  5. What is “coherent transfer by adiabatic passage” (CTAP)? Hamiltonian  0 Ω 12 0   Ω 23  0 ϕ 0 ∼ 0 H = Ω 12 Ω 23  ;    0 Ω 23 0 − Ω 12 eigenvector with E = 0: occupation 1 ? electron transfer | c 3 | 2 from dot 1 to dot 3 without occupying dot 2 | c 2 | 2 | c 1 | 2 Greentree et al. , PRB 2004 0 Ω 23 / Ω 12 cf. STIRAP (stimulated Raman adiabatic passage) ➔ adiabatic switching Ω ij ( t )

  6. CTAP — dephasing dephasing by phonons  0 Ω 12 ( t ) 0  ➔ small occupation of dot 2 H ( t ) = Ω 12 ( t ) 0 Ω 23 ( t )   Greentree et al. , PRB 2004 0 Ω 23 ( t ) 0 charge monitor increases Gauss pulse: dephasing Rech & Kehrein, PRL 2011 intensity | Ω 23 | 2 | Ω 12 | 2 time problem: experimental evidence for non-occupation (Zeno effect!)

  7. CTAP — dephasing dephasing by phonons  0 Ω 12 ( t ) 0  ➔ small occupation of dot 2 H ( t ) = Ω 12 ( t ) 0 Ω 23 ( t )   Greentree et al. , PRB 2004 0 Ω 23 ( t ) 0 charge monitor increases Gauss pulse: dephasing Rech & Kehrein, PRL 2011 intensity | Ω 23 | 2 | Ω 12 | 2 time problem: experimental evidence for non-occupation (Zeno effect!)

  8. Steady-state CTAP leads Ω 1 2 Ω 23 ➔ current | 1 〉 | 2 〉 | 3 〉 ➔ steady-state transport

  9. Steady-state CTAP leads Ω 1 2 Ω 23 ➔ current | 1 〉 | 2 〉 | 3 〉 ➔ steady-state transport Ω i j time evolution (propagation of ρ ) ρ 11 ρ 22 ρ 33 occupation ➔ direct transition | 1 〉 − → | 3 〉 0.5 ➔ ideally: 1 electron per pulse ? fingerprint: shot noise 0 0 2 4 6 suppression time [ T ]

  10. Noise and propagation method master equation approach: � perturbation theory for weak wire-lead coupling Γ � master equation for reduced density operator: (Bloch-R edfield equation, consistent with equilibrium conditions) d t ρ wire = d d d t tr leads ρ

  11. Noise and propagation method master equation approach: � perturbation theory for weak wire-lead coupling Γ � master equation for reduced density operator: (Bloch-R edfield equation, consistent with equilibrium conditions) d t ρ wire = d d I ∼ d S ∼ d d t tr leads N 2 d t tr leads ρ , d t tr leads N L ρ , L ρ ➔ Fano factor: Elattari & Gurvitz, Phys. Lett. (2002) ; Bagrets & Nazarov, PRB (2003) ; Novotný, Donarini, Flindt & Jauho, PRL (2004) ; Kaiser & SK, Ann. Phys. (2007) ➔ iterative calculation of FCS by numerical propagation ➔ more efficient than N -resolved master equation

  12. Steady-state CTAP 3 0.5 ρ 22 ¯ average occupation of dot 2 2 Γ [ Ω max ] 0.25 ρ 22 ≪ 1/3 if 1 � pulse distance ∆ T � 2 T � tunnel rate Γ ≈ 1 2 Ω max 0 0 0 1 2 3 4 5 6 pulse distance T [1/ Ω max ] 3 Fano factor F 2 0.5 shot noise suppression Γ [ Ω max ] correlates with low Fano 1 factor 0. 25 ➔ Fano factor as fingerprint of 0 0 1 2 3 4 5 6 CTAP pulse distance T [ 1 / Ω max ]

  13. Steady-state CTAP — quantitative analysis ρ 22 ¯ 1 Fano for small occupation: Fano factor F ≈ 0.2 0 .5 (elsewise F ≈ 0.5) 0 0 1 2 3 4 5 T [1/ Ω max ]

  14. Steady-state CTAP — quantitative analysis ρ 22 ¯ 1 Fano for small occupation: Fano factor F ≈ 0.2 0 .5 (elsewise F ≈ 0.5) 0 0 1 2 3 4 5 T [1/ Ω max ] CTAP not visible in current 1.5 correlation 〈 F , ¯ ρ 22 〉 γ φ = 0 γ φ = 0 .1 Ω max 1 moderate dephasing γ φ tolerable F max 0 .5 〈 F , ρ 22 〉 ideally: Γ ≈ Ω max /2 F min 0 0.5 1 1.5 2 2.5 3 ➔ „noise is the signal“ Γ [ Ω max ] (Landauer)

  15. Adiabatic Passage and Noise Landau-Zener-Stückelberg-Majorana Interferometry with Quantum Dots Forster, Petersen, Manus, Hänggi, Schuh, Wegscheider, SK, Ludwig PRL 112 , 116803 (2014)

  16. AC-driving and Landau-Zener transitions Quantum system in A C-field, H ( t ) non-adiabatic transition energy P LZ probability P LZ = e − π ∆ 2 /2 ħ v 1 − P LZ Landau, Zener, Stückelberg, time Majorana, 1932

  17. AC-driving and Landau-Zener transitions Quantum system in A C-field, H ( t ) non-adiabatic transition energy P LZ probability P LZ = e − π ∆ 2 /2 ħ v 1 − P LZ Landau, Zener, Stückelberg, time Majorana, 1932 ➔ beam splitter, interference ➔ Landau-Zener-(Stückelberg- Majorana) interferometry

  18. LZSM interference and photon-assisted tunneling LZSM interference „avoided crossings“

  19. LZSM interference and photon-assisted tunneling photon-assisted tunneling ħ Ω „dipole excitations“ „Conductance is transmission“ (Landauer, 1957) ǫ + 2 ħ Ω ǫ +ħ Ω ➔ scattering process ǫ ǫ ➔ with rf -field: resonances ǫ −ħ Ω ǫ − 2 ħ Ω

  20. LMU experiment: interference pattern Experimental LZSM pattern (Ludwig group, LMU Munich) I [ fA ] 0 100 200 resonance peaks A [ µ eV] 100 with increasing temperature: pattern blurred 1 8 mK 0 200 ➔ phonons A [ µ eV] ➔ pattern contains information about decoherence 100 475 mK 0 − 200 0 200 ǫ [ µ eV]

  21. LMU experiment: realistic modelling (1,1) T (1,1) S (0,2) S (0,1) ∼ single-particle terms ✓ dot-lead tunneling ✓ detuning ✓ AC gate voltage H rf ( t ) ∝ cos( Ω t ) ✓ Zeeman splitting

  22. LMU experiment: realistic modelling (1,1) T (1,1) S (0,2) S (0,1) ∼ single-particle terms two-particle interaction ✓ dot-lead tunneling ✗ spin relaxation (resolves spin blockade) ✓ detuning ✗ Coulomb repulsion ✓ AC gate voltage H rf ( t ) ∝ cos( Ω t ) ✗ coupling to phonons ✓ Zeeman splitting ➔ master equation for many-body states

  23. Decoherence & slow fluctuations Decoherence: Caldeira-Leggett model H DQD-bath = ( n L − n R ) ξ Ohmic spectral density J ( ω ) = π 2 αω exp( − ω / ω cutoff ) vib vib dissipation strength α Slow fluctuations time scale < dwell time ǫ Gauss distributed w ( ǫ ) ∝ e − 1 2 ( ∆ ǫ / λ ∗ ) 2 ➔ convolution of I ( ǫ , A ) with Gauss inhomogeneous broadening λ ∗

  24. Decoherence & slow fluctuations Decoherence: Caldeira-Leggett model H DQD-bath = ( n L − n R ) ξ Ohmic spectral density J ( ω ) = π 2 αω exp( − ω / ω cutoff ) vib vib dissipation strength α Slow fluctuations Central idea comparison time scale < dwell time experiment/theory ǫ Gauss distributed � I ( ǫ , A ) ➔ λ ∗ w ( ǫ ) ∝ e − 1 2 ( ∆ ǫ / λ ∗ ) 2 � W ( τ ǫ , τ A ) ➔ α ➔ convolution of I ( ǫ , A ) with Gauss ➔ determine dissipative inhomogeneous broadening λ ∗ parameters

  25. Floquet-Bloch-Redfield master equation Perturbation theory in DQD-environment coupling V � ∞ d t ρ = − i d � � � � H DQD ( t ), ρ − d τ [ V ,[ V ( t − τ , t ), ρ ]] ħ env 0 Floquet theory (Bloch theory in time) ➔ rf- field exact i ħ ∂ � � ∂ t − H DQD ( t ) φ α ( t ) = ǫ n φ n ( t ), mit φ n ( t ) = φ n ( t + 2 π / Ω ) ( 1 , 1 ) T rate equation for occupations (1,1) S (0,2) S � � ˙ P n = W n ← n ′ P n ′ − W n ′ ← n P n (0,1) W = W leads + W spinflip + α W bath ∼ ➔ determination of α requires knowledge of W leads and W spinflip

  26. Inhomogeneous broadening theory experiment I [fA] 100 0 − 200 − 100 0 100 200 ǫ resonance peaks � singlet-triplet mixing � inter-dot excitations

  27. Inhomogeneous broadening I [ fA] 0 100 theory , λ ∗ = 3.5 µ eV experiment 200 experiment I [fA] 100 A [ µ eV] 100 T = 1 8mK 0 0 200 − 200 − 100 0 100 200 ǫ A [ µ eV] resonance peaks 100 � singlet-triplet mixing theory λ ∗ = 0 � inter-dot excitations 0 200 λ ∗ = 3.5 µ eV A [ µ eV] ➔ 100 λ ∗ = in agreement with e.g. 3.5 µ eV 0 − 200 0 200 Petersson et al. PRB 2010 ǫ [ µ eV]

  28. Analysis in Fourier space LZSM pattern in Fourier space: decaying arcs Rudner et al. , PRL 2008 1 1 000 18 mK 275 mK W (lemon) τ A [ ħ / µ eV] 475 mK 0 1 00 e x p e r im en t − 1 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 1 τ ǫ [ ħ / µ eV] τ A [ ħ / µ eV] 0 th e ory − 1 − 1 0 1 τ ǫ [ ħ / µ eV]

  29. Analysis in Fourier space LZSM pattern in Fourier space: decaying arcs Rudner et al. , PRL 2008 1 1 000 18 mK 275 mK W (lemon) τ A [ ħ / µ eV] 475 mK 0 1 00 e x p e r im en t − 1 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 1 τ ǫ [ ħ / µ eV] τ A [ ħ / µ eV] arc decay 0 f ( τ ǫ ) ∝ e − λτ ǫ − 1 2 ( λ ∗ τ ǫ ) 2 th e ory − 1 ➔ compare λ exp and λ theo − 1 0 1 τ ǫ [ ħ / µ eV] ➔ determine α

  30. Temperature dependence 15 λ grows with temperature 10 [ µ eV] 5 λ experiment 0 0 100 200 300 400 t em perature T [mK] 174 mK 290 mK [ µ e V ] 406 mK 10 fit parameter: dissipation strength λ ( α ) theory α = 1.5 · 10 − 4 ( ± 30%) 0 1 · 10 − 4 2 · 10 − 4 0 dissipation strength α

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend