soft theorems from effective field theory
play

Soft Theorems from Effective Field Theory Andrew Larkoski MIT - PowerPoint PPT Presentation

Soft Theorems from Effective Field Theory Andrew Larkoski MIT AJL, D. Neill, I. Stewart 1412.3108 SCET, March 25, 2015 A (1 , . . . , N, s ) S (0) ( s ) A (1 , . . . , N ) N gT i s p i (Prehistory) Weinberg 1964, 1965 S


  1. Soft Theorems from Effective Field Theory Andrew Larkoski MIT AJL, D. Neill, I. Stewart 1412.3108 SCET, March 25, 2015

  2. A (1 , . . . , N, s ) → S (0) ( s ) A (1 , . . . , N ) N gT i � ǫ s · p i (Prehistory) � Weinberg 1964, 1965 S (0) � gauge ( s ) = p s · p i i =1 Gauge invariance: Charge conservation N κQ i � ǫ µν s p iµ p iν � S (0) � grav ( s ) = p s · p i i =1 Gauge invariance: Momentum conservation & universal coupling of gravity 2

  3. � � S (0) ( s ) + S (2) ( s ) A (1 , . . . , N, s ) → A (1 , . . . , N ) N gT i � ǫ µ s p ν s J i Low 1958 � µν Burnett, Kroll 1967 S (2) � gauge ( s ) = p s · p i i =1 Gauge invariance: Anti-symmetry of angular momentum tensor ∂ J i + Σ i µν = p i [ µ µν ∂p ν ] i Proofs of Low-Burnett-Kroll at tree-level: BCFW recursion relations Casali, 2014 Conformal symmetry of tree-level 4D gauge theory amplitudes AJL, 2014 Bern, Davies, Di Vecchia, Gauge and Lorentz invariance Nohles, 2014 3

  4. Tree-level: p s · p i p s ( p j + p k ) 2 ≪ 1 H ( p H + p s ) 2 = 1 1 − 2 p H · p s + · · · p 2 p 4 H H Loop-level: p s · p i p s ( p i + ℓ ) 2 ∼ 1 p i H 1 1 ( ℓ + p i + p s ) 2 = ℓ ( ℓ + p i ) 2 + 2( ℓ + p i ) · p s 4

  5. λ order loop-order A [0] (1 , . . . , N, s ) → A [0](0) (1 , . . . , N, s ) ( ∼ λ − 2 ) + A [0](1) (1 , . . . , N, s ) ( ∼ λ − 1 ) + A [0](2) (1 , . . . , N, s ) ( ∼ λ 0 ) + O ( λ 1 ) p s ∼ Q λ 2 “soft” p c ∼ Q (1 , λ 2 , λ ) external collinear 5

  6. A [0](0) (1 , . . . , N, s ) : Tree-level A (1 , . . . , N, s ) → S (0) ( s ) A (1 , . . . , N ) In SCET: p s � 0 |O (0) N | p 1 , . . . , p N � = A [0] O (0) N + · · · N � O (0) O (0) L (0) � � � � �� � � � � � 0 � p 1 , . . . , p N , p s = 0 � T N , � p 1 , . . . , p N , p s int + . . . N n i , soft i = S (0) ( s ) A [0] N + . . . , p s ( p − � � i n i ) · ǫ s S (0) ( s ) = ⊗ = ¯ u ( p i ) · − gT i p i ( p − i n i ) · p s for fermions 6

  7. A [0](1) (1 , . . . , N, s ) , A [0](2) (1 , . . . , N, s ) : Tree-level Power-count Low-Burnett-Kroll Operator N gT i � ǫ µ s p ν s J i � µν S (2) � gauge ( s ) = p s · p i i =1 Propagator factor: p i · p s = (¯ n · p i )( n · p s ) + ( n · p i )(¯ n · p s ) + p i ⊥ · p s ⊥ 2 2 � �� � � �� � � �� � ∼ λ 3 ∼ λ 2 ∼ λ 4 1 2 4 p i ⊥ · p s ⊥ n · p i ) 2 ( n · p s ) 2 + O ( λ 0 ) = n · p i )( n · p s ) − p i · p s (¯ (¯ 7

  8. A [0](1) (1 , . . . , N, s ) , A [0](2) (1 , . . . , N, s ) : Tree-level Power-count Low-Burnett-Kroll Operator N gT i � ǫ µ s p ν s J i � µν S (2) � gauge ( s ) = p s · p i i =1 Angular momentum factor: ∂ J iµν = p i [ µ + Σ iµν ∂ p ν ] i � n · p i ¯ � ∂ ∂ J iµν = ∂ ( n · p i ) + n [ µ p i ⊥ [ µ n ν ] ∂p ν ] 2 i ⊥ � � ∂ n · p i ∂ n · p i ¯ ∂ + + ¯ ∂ ( n · p i ) + n [ µ ¯ n · p i ) + Σ iµν p i ⊥ [ µ n [ µ n ν ] n ν ] ∂p ν ] 2 2 ∂ (¯ i ⊥ + O ( λ 1 ) , 8

  9. A [0](1) (1 , . . . , N, s ) , A [0](2) (1 , . . . , N, s ) : Tree-level Power-count Low-Burnett-Kroll Operator N gT i � ǫ µ s p ν s J i � µν S (2) � gauge ( s ) = p s · p i i =1 Putting it together: p i ⊥ = 0 RPI choice: n · p i = 0 On-shell: N 2 ǫ µ s p ν � n · p i ¯ � ∂ RPI � S (2) s gT i � n · p i ) + Σ i � gauge ( s ) ≃ n [ µ ¯ n ν ] µν ( n · p s )(¯ n · p i ) 2 ∂ (¯ i =1 ( ∼ λ 0 ) 9

  10. A [0](1) (1 , . . . , N, s ) = � 0 | T {O (1) L (0) � Tree-level n i , soft } N , i + T {O (0) L (1) � n i , soft }| p 1 , ..., p N , p s � N , i Lagrangians: Operators: ∂ i ⊥ = i ¯ n / 2 p n ⊥ · p s ⊥ (1) ≃ 0 O (1) 2 n · p n ¯ p n , p s N (RPI) µ 2 p µ = ig ¯ n / O (1) ≃ 0 } n i n ⊥ N p n n 2 n · p n ¯ (1) (kinematics) No non-trivial contribution at λ -1 for fermions 10 2)

  11. A [0](2) (1 , . . . , N, s ) ≃ � 0 | T {O (2) L (0) � n i , soft } Tree-level N , i + T {O (0) L (2) � n i , soft }| p 1 , ..., p N , p s � N , i Operators: Generated by RPI expansion of label δ -functions in O (0) p s N N N ∂ O (2 δ ) ) = − � � C (0) � � n · i ∂ n ) X κ i � � { Q i } ⊗ δ (¯ n i · Q i − ¯ n i (0) N ∂ ¯ n k · Q k N k =1 i =1 N � � � n k · gB ( n k ) A T κ k A Y κ i ⊗ T ¯ n i (0) s i =1 Generated by RPI expansion of collinear fields in O (0) p s N O (2 r ) N N ) = C (0) � � � � n · i ∂ n ) X κ i � � { Q i } ⊗ δ (¯ n i · Q i − ¯ n i (0) N N k =1 i =1 ,i � = k N t µ � � � � � X κ k gB ( n k ) A T κ k A Y κ i k δ (¯ n k · Q k − ¯ n · i ∂ n ) n k (0) ⊗ T n i (0) × sµ n k · Q k ¯ i =1 11

  12. A [0](2) (1 , . . . , N, s ) ≃ � 0 | T {O (2) L (0) � n i , soft } Tree-level N , i + T {O (0) L (2) � n i , soft }| p 1 , ..., p N , p s � N , i Operators: Generated by RPI expansion of label δ -functions in O (0) p s N N N ∂ O (2 δ ) ) = − � � C (0) � � n · i ∂ n ) X κ i � � { Q i } ⊗ δ (¯ n i · Q i − ¯ n i (0) N ∂ ¯ n k · Q k N k =1 i =1 orbital angular momentum N � � � n k · gB ( n k ) A T κ k A Y κ i ⊗ T ¯ n i (0) s i =1 Generated by RPI expansion of collinear fields in O (0) p s N O (2 r ) N N ) = C (0) � � � � n · i ∂ n ) X κ i � � { Q i } ⊗ δ (¯ n i · Q i − ¯ n i (0) N N k =1 i =1 ,i � = k N t µ � � � � � X κ k gB ( n k ) A T κ k A Y κ i k δ (¯ n k · Q k − ¯ n · i ∂ n ) n k (0) ⊗ T n i (0) × sµ n k · Q k ¯ i =1 only non-zero for fermions 12

  13. A [0](2) (1 , . . . , N, s ) ≃ � 0 | T {O (2) L (0) � n i , soft } Tree-level N , i + T {O (0) L (2) � n i , soft }| p 1 , ..., p N , p s � N , i Lagrangians: p µ s p µ p 2 = ig ¯ n / + ig ¯ n / p s ⊥ ν 1 = i ¯ n / (2) ⊥ , γ µ s ⊥ 2[ γ ν s ⊥ ⊥ ] p n n 2 n · p n ¯ 2 n · p n ¯ 2 n · p n ¯ p n , p s (2) p s p s (2) + ⊗ ⊗ p i p i (2) n µ n ν ǫ sµ p s ν � + 1 � p µ ⊥ , γ µ − p ν 2[ γ ν i i = ¯ u ( p i ) · ( − g ) ⊥ ] s ⊥ s ⊥ p − n i · p s n i · p s i ( n i · p s ) for fermions 13

  14. A [0](2) (1 , . . . , N, s ) ≃ � 0 | T {O (2) L (0) � n i , soft } Tree-level N , i + T {O (0) L (2) � n i , soft }| p 1 , ..., p N , p s � N , i Putting it all together: A [0](2) (1 , . . . , N, s ) = S (2) ( s ) A (1 , · · · , N ) u ( p i ) ˜ A N = ¯ A N for fermions � 2 ǫ sµ p sν n i · p i ¯ ∂ S (2) n [ µ n ν ] iψ A N = g n i · p i )( n i · p s ) ¯ u ( p i ) T i i ¯ i (¯ 2 ∂ (¯ n i · p i ) n ν ] / � n i ¯ 2( n i · p s ) + 1 + γ [ µ ⊥ n ν ] 4 + p [ µ 4[ γ µ ˜ i ⊥ , γ ν ⊥ ] A N i s ⊥ 14

  15. A [0](2) (1 , . . . , N, s ) ≃ � 0 | T {O (2) L (0) � n i , soft } Tree-level N , i + T {O (0) L (2) � n i , soft }| p 1 , ..., p N , p s � N , i Putting it all together: A [0](2) (1 , . . . , N, s ) = S (2) ( s ) A (1 , · · · , N ) u ( p i ) ˜ A N = ¯ A N O (2 δ ) orbital angular momentum for fermions N � 2 ǫ sµ p sν n i · p i ¯ ∂ S (2) n [ µ n ν ] iψ A N = g n i · p i )( n i · p s ) ¯ u ( p i ) T i i ¯ i (¯ 2 ∂ (¯ n i · p i ) n ν ] / � n i ¯ 2( n i · p s ) + 1 + γ [ µ ⊥ n ν ] 4 + p [ µ 4[ γ µ ˜ i ⊥ , γ ν ⊥ ] A N i s ⊥ spin angular momentum O (2 r ) L (2) N RPI was necessary for universal factorized form! 15

  16. One-loop soft theorem 16

  17. A [1](0) (1 , . . . , N, s ) : Loop-level A [1](0) N +1 s = S [0](0) ( s ) A [1](0) + S [1](0) ( s ) A [0](0) N N Universality of leading soft factor persists to one-loop A [1](1) (1 , . . . , N, s ) : A [1](1) N +1 s ≃ 0 All possible operator and Lagrangian contributions can be set to zero by RPI 17

  18. A [1](2) N +1 s = S [0](2) ( s ) A [1 , hard](0) Loop-level N + A [0](0) I [0](2 L ) S [1](0) ( s ) N N N � � � + A [0](0) I [0](2 L ) k ( x ) E [1] µ � s ( n k ) ( x ) + I [0](2 L ) k κ ( x ) E [1] µ ν � κ � d d x s ( n k )( n k ) ( x, x ) N N µ N µ ν k =1 N − ∂ A [0](0) � � Split [0](0) E [1] µ � n kµ + A [0](0) I [0](0 r ) k (0) E [1] µ � κ κ � N + s ( n k ) (0) ¯ s ( n k ) (0) N N µ ∂ ¯ n k · Q k k =1 N [1](2) ( P k → k, s ) A [0](0) � + Split (1 , . . . , P k , . . . , N ) N k =1 N [0](2) ( P k → k, s ) Split [1](0) ( l → l ) A [0](0) � + Split (1 , . . . , l, . . . , P k , . . . , N ) N k =1 l � = k N − ∂ A [0](0) � � Split [1](0) E [0] µ � κ n kµ + A [0](0) I [1](0 r ) k E [0] µ � κ � N + s ( n k ) (0) ¯ s ( n k ) (0) N N µ ∂ ¯ n k · Q k k =1 N �� � [1](2 X 2 � k ) J [1](2 X k L ) + J [1](2 X k ∂ ) E [0] � E [0] � κ κ � + s [ n k ]2 + J N N N s [ n k ]3 k =1 N � d d x J [1](2 X k L k ′ ) µ ( x ) E [0] � κ � + s ( n k ′ )[ n k ] µ ( x ) N k,k ′ =1 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend