multicriteria optimization some continuous and discrete
play

Multicriteria Optimization Some continuous and discrete dynamics - PowerPoint PPT Presentation

Multicriteria Optimization Some continuous and discrete dynamics Guillaume Garrigos Institut de Mathmatiques et de Modlisation de Montpellier Universidad Tecnica Federico Santa Maria Sestri-Levante: Franco/Italian workshop 8-12 September


  1. Multicriteria Optimization Some continuous and discrete dynamics Guillaume Garrigos Institut de Mathématiques et de Modélisation de Montpellier Universidad Tecnica Federico Santa Maria Sestri-Levante: Franco/Italian workshop 8-12 September 2014 Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 1/35

  2. Context H is an Hilbert space, f i : H → R are Lipschitz continuous on bounded sets. K ⊂ H is a closed convex non empty set of constraints, One of the objective functions is bounded from below. Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 2/35

  3. Context H is an Hilbert space, f i : H → R are Lipschitz continuous on bounded sets. K ⊂ H is a closed convex non empty set of constraints, One of the objective functions is bounded from below. One approach, the scalarization method : q q chose 0 ≤ θ i ≤ 1, � θ i = 1, and minimize � θ i f i . i = 1 i = 1 Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 2/35

  4. Context H is an Hilbert space, f i : H → R are Lipschitz continuous on bounded sets. K ⊂ H is a closed convex non empty set of constraints, One of the objective functions is bounded from below. One approach, the scalarization method : q q chose 0 ≤ θ i ≤ 1, � θ i = 1, and minimize � θ i f i . i = 1 i = 1 We are looking for the simultaneous minimization of the f i ’s. Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 2/35

  5. Contents Multicriteria analysis 1 Continuous steepest descent dynamic 2 Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 3/35

  6. Contents Multicriteria analysis 1 Continuous steepest descent dynamic 2 Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 4/35

  7. Nonsmooth analysis tools Directional derivative (of Clarke) f ( x ′ + td ) − f ( x ′ ) df ( x ; d ) := lim sup . t t ↓ 0 x ′→ x Subdifferential (of Clarke) ∂ f ( x ) := { p ∈ H | � p , d � ≤ df ( x ; d ) ∀ d ∈ H } . Remark If f is of class C 1 , then ∂ f ( x ) = {∇ f ( x ) } and df ( x ; d ) = �∇ f ( x ) , d � . Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 5/35

  8. Nonsmooth analysis tools Tangent and normal cones T K ( x ) := cl { d ∈ H | ∃ ε > 0 , ∀ t ∈ ] 0 , ε [ , x + td ∈ K } . N K ( x ) := { p ∈ H | � p , d � ≤ 0 ∀ d ∈ T K ( x ) } . K x T K ( x ) N K ( x ) Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 6/35

  9. Multicriteria analysis Descent direction We say that d ∈ H is a descent direction at x if df i ( x ; d ) < 0 holds for all i = 1 .. q . We say that it is an admissible descent direction if moreover d ∈ T K ( x ) . Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 7/35

  10. b Example ∇ f 1 ( x ) x Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 8/35

  11. b Example ∇ f 2 ( x ) ∇ f 1 ( x ) x Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 9/35

  12. Multicriteria analysis Armijo direction We say that a descent direction d ∈ H is an Armijo direction if ∃ ε > 0 s.t. for all t ∈ ] 0 , ε [ : ∀ i , f i ( x + td ) < f i ( x ) + t 2 df i ( x ; d ) . We say that it is an admissible Armijo direction if moreover x + td ∈ K . Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 10/35

  13. Multicriteria analysis Pareto equilibrium(s) Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 11/35

  14. Multicriteria analysis Pareto equilibrium(s) We say that x ∈ K is a Pareto if there is no y ∈ K such that ∀ i f i ( y ) ≤ f i ( x ) and ∃ I f I ( y ) < f I ( x ) . Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 11/35

  15. Multicriteria analysis Pareto equilibrium(s) We say that x ∈ K is a Pareto if there is no y ∈ K such that ∀ i f i ( y ) ≤ f i ( x ) and ∃ I f I ( y ) < f I ( x ) . We say that x ∈ K is a weak Pareto if there is no y ∈ K s.t. ∀ i f i ( y ) < f i ( x ) . Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 11/35

  16. b Example ∇ f 2 ( x ) ∇ f 1 ( x ) x Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 12/35

  17. Multicriteria analysis Pareto equilibrium(s) We say that x ∈ K is a Pareto if there is no y ∈ K such that ∀ i f i ( y ) ≤ f i ( x ) and ∃ I f I ( y ) < f I ( x ) . We say that x ∈ K is a weak Pareto if there is no y ∈ K s.t. ∀ i f i ( y ) < f i ( x ) . We say that x ∈ K is a critical Pareto if 0 ∈ N K ( x ) + Conv { ∂ f i ( x ) } . Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 13/35

  18. b Example Conv {∇ f i ( x ) } x Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 14/35

  19. Multicriteria analysis Pareto equilibrium(s) We say that x ∈ K is a Pareto if there is no y ∈ K such that ∀ i f i ( y ) ≤ f i ( x ) and ∃ I f I ( y ) < f I ( x ) . We say that x ∈ K is a weak Pareto if there is no y ∈ K s.t. ∀ i f i ( y ) < f i ( x ) . We say that x ∈ K is a critical Pareto if 0 ∈ N K ( x ) + Conv { ∂ f i ( x ) } . Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 15/35

  20. Multicriteria analysis Pareto equilibrium(s) We say that x ∈ K is a Pareto if there is no y ∈ K such that ∀ i f i ( y ) ≤ f i ( x ) and ∃ I f I ( y ) < f I ( x ) . We say that x ∈ K is a weak Pareto if there is no y ∈ K s.t. ∀ i f i ( y ) < f i ( x ) . We say that x ∈ K is a critical Pareto if 0 ∈ N K ( x ) + Conv { ∂ f i ( x ) } . Properties Pareto ⇒ weak Pareto ⇒ critical Pareto. If the f i are convex, then weak Pareto ⇔ critical Pareto. If the f i are strictly convex, then the 3 notions both coincide. Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 15/35

  21. Link between descent direction and Pareto equilibrium Proposition The following statements are equivalent : x is a critical Pareto point, There is no admissible descent direction at x , There is no admissible Armijo direction at x . Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 16/35

  22. Objectif We will consider 1 a continuous dynamic ˙ u ( t ) = s ( u ( t )) , where s : K → H verify s ( u ) = 0 if u is a critical Pareto point, s ( u ) is an admissible descent direction else. 2 an algorithm u n + 1 = u n + t n d n where d n is an admissible Armijo direction. Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 17/35

  23. Contents Multicriteria analysis 1 Continuous steepest descent dynamic 2 Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 18/35

  24. The multiobjective steepest descent direction Definition Given x ∈ K , the multiobjective steepest descent direction is s ( x ) := − ( N K ( x ) + Conv { ∂ f i ( x ) } ) 0 . Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 19/35

  25. b b Example − s ( x ) Conv {∇ f i ( x ) } x Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 20/35

  26. The multiobjective steepest descent direction Definition Given x ∈ K , the multiobjective steepest descent direction is s ( x ) := − ( N K ( x ) + Conv { ∂ f i ( x ) } ) 0 . Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 21/35

  27. The multiobjective steepest descent direction Definition Given x ∈ K , the multiobjective steepest descent direction is s ( x ) := − ( N K ( x ) + Conv { ∂ f i ( x ) } ) 0 . Obviously, x is a Pareto critical iff s ( x ) = 0. Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 21/35

  28. The multiobjective steepest descent direction Definition Given x ∈ K , the multiobjective steepest descent direction is s ( x ) := − ( N K ( x ) + Conv { ∂ f i ( x ) } ) 0 . Obviously, x is a Pareto critical iff s ( x ) = 0. In a sense, s ( x ) selects itself a different convex combination of the functions at each x . Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 21/35

  29. The multiobjective steepest descent direction Definition Given x ∈ K , the multiobjective steepest descent direction is s ( x ) := − ( N K ( x ) + Conv { ∂ f i ( x ) } ) 0 . Obviously, x is a Pareto critical iff s ( x ) = 0. In a sense, s ( x ) selects itself a different convex combination of the functions at each x . Example If q = 1, then s ( x ) = proj T K ( x ) ( −∇ f ( x )) . Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 21/35

  30. The multiobjective steepest descent direction Definition Given x ∈ K , the multiobjective steepest descent direction is s ( x ) := − ( N K ( x ) + Conv { ∂ f i ( x ) } ) 0 . Obviously, x is a Pareto critical iff s ( x ) = 0. In a sense, s ( x ) selects itself a different convex combination of the functions at each x . Example If q = 1, then s ( x ) = proj T K ( x ) ( −∇ f ( x )) . Property s ( x ) is an admissible descent direction at x , whenever s ( x ) � = 0. Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 21/35

  31. b b Example − s ( x ) Conv {∇ f i ( x ) } x Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 22/35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend