compromise solutions in multicriteria optimization
play

Compromise Solutions in Multicriteria Optimization Kai-Simon - PowerPoint PPT Presentation

Introduction Definitions and Notations Basic Properties Approximation Compromise Solutions in Multicriteria Optimization Kai-Simon Goetzmann (Joint work with Christina B using and Jannik Matuschke) OR 2011 August 31 Kai-Simon


  1. Introduction Definitions and Notations Basic Properties Approximation Compromise Solutions in Multicriteria Optimization Kai-Simon Goetzmann (Joint work with Christina B¨ using and Jannik Matuschke) OR 2011 – August 31 Kai-Simon Goetzmann Compromise Solutions

  2. Introduction Definitions and Notations Basic Properties Approximation Multicriteria Optimization Pareto optimal solutions: No objective can be improved without worsening another. f 2 ( x ) f 1 ( x ) Kai-Simon Goetzmann Compromise Solutions

  3. Introduction Definitions and Notations Basic Properties Approximation Multicriteria Optimization Pareto optimal solutions: No objective can be improved without worsening another. f 2 ( x ) f 1 ( x ) Kai-Simon Goetzmann Compromise Solutions

  4. Introduction Definitions and Notations Basic Properties Approximation Multicriteria Optimization Pareto optimal solutions: No objective can be improved without worsening another. f 2 ( x ) f 1 ( x ) Kai-Simon Goetzmann Compromise Solutions

  5. Introduction Definitions and Notations Basic Properties Approximation Avoiding too many solutions Scalarization: Maximize (weighted) sum of all objectives. f 2 ( x ) f 1 ( x ) Kai-Simon Goetzmann Compromise Solutions

  6. Introduction Definitions and Notations Basic Properties Approximation Avoiding too many solutions Scalarization: Maximize (weighted) sum of all objectives. f 2 ( x ) f 1 ( x ) Kai-Simon Goetzmann Compromise Solutions

  7. Introduction Definitions and Notations Basic Properties Approximation Avoiding too many solutions Scalarization: Maximize (weighted) sum of all objectives. f 2 ( x ) f 1 ( x ) Kai-Simon Goetzmann Compromise Solutions

  8. Introduction Definitions and Notations Basic Properties Approximation Avoiding too many solutions Scalarization: Maximize (weighted) sum of all objectives. f 2 ( x ) f 1 ( x ) Kai-Simon Goetzmann Compromise Solutions

  9. Introduction Definitions and Notations Basic Properties Approximation Avoiding too many solutions Scalarization: Maximize (weighted) sum of all objectives. f 2 ( x ) f 1 ( x ) Kai-Simon Goetzmann Compromise Solutions

  10. Introduction Definitions and Notations Basic Properties Approximation Our Answer Compromise Solutions: Minimize distance to ideal point (w.r.t. some metric). f 2 ( x ) f 1 ( x ) Kai-Simon Goetzmann Compromise Solutions

  11. Introduction Definitions and Notations Basic Properties Approximation Our Answer Compromise Solutions: Minimize distance to ideal point (w.r.t. some metric). f 2 ( x ) f 1 ( x ) Kai-Simon Goetzmann Compromise Solutions

  12. Introduction Definitions and Notations Basic Properties Approximation Our Answer Compromise Solutions: Minimize distance to ideal point (w.r.t. some metric). f 2 ( x ) f 1 ( x ) Kai-Simon Goetzmann Compromise Solutions

  13. Introduction Definitions and Notations Basic Properties Approximation Introduction 1 Definitions and Notations 2 Basic Properties 3 Approximation 4 Kai-Simon Goetzmann Compromise Solutions

  14. Introduction Definitions and Notations Basic Properties Approximation Introduction 1 Definitions and Notations 2 Basic Properties 3 Approximation 4 Kai-Simon Goetzmann Compromise Solutions

  15. Introduction Definitions and Notations Basic Properties Approximation Definition (Ideal Point) Given a multicriteria optimization problem max y ∈Y y , the ideal point y ∗ = ( y ∗ 1 , . . . , y ∗ k ) is defined by y ∗ i = max y ∈Y y i ∀ i. y 2 y ∗ Y y 1 Kai-Simon Goetzmann Compromise Solutions

  16. Introduction Definitions and Notations Basic Properties Approximation Definition (Compromise Solution, Yu 1973) Given a multicriteria optimization problem max y ∈Y y with the ideal point y ∗ ∈ ◗ k , the Compromise Solution w.r.t. the norm �·� on ◗ k is y CS = min y ∈Y � y ∗ − y � . y 2 y ∗ y 1 Kai-Simon Goetzmann Compromise Solutions

  17. Introduction Definitions and Notations Basic Properties Approximation Definition (Compromise Solution, Yu 1973) Given a multicriteria optimization problem max y ∈Y y with the ideal point y ∗ ∈ ◗ k , the Compromise Solution w.r.t. the norm �·� on ◗ k is y CS = min y ∈Y � y ∗ − y � . y 2 y ∗ y 1 Kai-Simon Goetzmann Compromise Solutions

  18. Introduction Definitions and Notations Basic Properties Approximation The norms we consider: � k � 1 / p � y p ( ℓ p -Norm) � y � p := , p ∈ [1 , ∞ ) i i =1 (Maximum ( ℓ ∞ -)Norm) � y � ∞ := max i =1 ,...,k y i | p := � y � ∞ + 1 | | | y | | p � y � 1 , p ∈ [1 , ∞ ] ( Cornered p -Norm) 1 1 p = 1 p = 2 p = 5 1 1 p = ∞ ℓ p -Norm Cornered p -Norm Degree of balancing controlled by adjusting p . Kai-Simon Goetzmann Compromise Solutions

  19. Introduction Definitions and Notations Basic Properties Approximation The norms we consider: � k � 1 / p � y p ( ℓ p -Norm) � y � p := , p ∈ [1 , ∞ ) i i =1 (Maximum ( ℓ ∞ -)Norm) � y � ∞ := max i =1 ,...,k y i | p := � y � ∞ + 1 | | | y | | p � y � 1 , p ∈ [1 , ∞ ] ( Cornered p -Norm) Weighted version: For any norm and λ ∈ ◗ k , λ ≥ 0 , λ � = 0 : � y � λ = � ( λ 1 y 1 , λ 2 y 2 , . . . , λ k y k ) � . Kai-Simon Goetzmann Compromise Solutions

  20. Introduction Definitions and Notations Basic Properties Approximation Introduction 1 Definitions and Notations 2 Basic Properties 3 Approximation 4 Kai-Simon Goetzmann Compromise Solutions

  21. Introduction Definitions and Notations Basic Properties Approximation Known Properties Notation: For a family of norms �·� p , p ∈ [1 , ∞ ] , define CS ( λ, p ) := { Compromise Solution w.r.t. �·� λ p } CS ( p ) := { CS ( λ, p ) : λ ∈ ◗ k , λ ≥ 0 , λ � = 0 } Gearhardt 1979: Pareto optimality: CS ( p ) ⊆ Y P for p < ∞ . Y discrete ⇒ Y P = CS ( p ) for p big enough. y 2 Y P y 1 Kai-Simon Goetzmann Compromise Solutions

  22. Introduction Definitions and Notations Basic Properties Approximation Known Properties Notation: For a family of norms �·� p , p ∈ [1 , ∞ ] , define CS ( λ, p ) := { Compromise Solution w.r.t. �·� λ p } CS ( p ) := { CS ( λ, p ) : λ ∈ ◗ k , λ ≥ 0 , λ � = 0 } Gearhardt 1979: Pareto optimality: CS ( p ) ⊆ Y P for p < ∞ . Y discrete ⇒ Y P = CS ( p ) for p big enough. How big? y 2 Y P y 1 Kai-Simon Goetzmann Compromise Solutions

  23. Introduction Definitions and Notations Basic Properties Approximation How to choose p Consider the Cornered Norm | | | · | | | p . Assumptions: Integrality: Y ⊂ ◆ k 0 Boundedness: ∃ polynomial π : y i ≤ 2 π ( | I | ) ∀ y ∈ Y , i = 1 , . . . , k Lemma (B¨ using,G.,Matuschke) Let M := 2 π ( | I | ) . For p > kM , it holds that Y P = CS ( p ) . Remarks: p can be chosen such that it has polynomial encoding length. ℓ p -norm: p � M log k suffices. Kai-Simon Goetzmann Compromise Solutions

  24. Introduction Definitions and Notations Basic Properties Approximation Introduction 1 Definitions and Notations 2 Basic Properties 3 Approximation 4 Kai-Simon Goetzmann Compromise Solutions

  25. Introduction Definitions and Notations Basic Properties Approximation Another way to cope with exponential size of Y P : Definition ( ε -approximate Pareto set) Let Y P be the Pareto set of a given instance, and let ε > 0 . Y εP ⊆ Y is an ε -approximate Pareto set if for all y ∈ Y P there is y ′ ∈ Y εP such that y i ≤ (1 + ε ) y ′ ∀ i = 1 , . . . , k i Kai-Simon Goetzmann Compromise Solutions

  26. Introduction Definitions and Notations Basic Properties Approximation Another way to cope with exponential size of Y P : Definition ( ε -approximate Pareto set) Let Y P be the Pareto set of a given instance, and let ε > 0 . Y εP ⊆ Y is an ε -approximate Pareto set if for all y ∈ Y P there is y ′ ∈ Y εP such that y i ≤ (1 + ε ) y ′ ∀ i = 1 , . . . , k i Kai-Simon Goetzmann Compromise Solutions

  27. Introduction Definitions and Notations Basic Properties Approximation Another way to cope with exponential size of Y P : Definition ( ε -approximate Pareto set) Let Y P be the Pareto set of a given instance, and let ε > 0 . Y εP ⊆ Y is an ε -approximate Pareto set if for all y ∈ Y P there is y ′ ∈ Y εP such that y i ≤ (1 + ε ) y ′ ∀ i = 1 , . . . , k i Kai-Simon Goetzmann Compromise Solutions

  28. Introduction Definitions and Notations Basic Properties Approximation Another way to cope with exponential size of Y P : Definition ( ε -approximate Pareto set) Let Y P be the Pareto set of a given instance, and let ε > 0 . Y εP ⊆ Y is an ε -approximate Pareto set if for all y ∈ Y P there is y ′ ∈ Y εP such that y i ≤ (1 + ε ) y ′ ∀ i = 1 , . . . , k i Kai-Simon Goetzmann Compromise Solutions

  29. Introduction Definitions and Notations Basic Properties Approximation Another way to cope with exponential size of Y P : Definition ( ε -approximate Pareto set) Let Y P be the Pareto set of a given instance, and let ε > 0 . Y εP ⊆ Y is an ε -approximate Pareto set if for all y ∈ Y P there is y ′ ∈ Y εP such that y i ≤ (1 + ε ) y ′ ∀ i = 1 , . . . , k i Theorem (Papadimitriou&Yannakakis,2000) There always exists an ε -approximate Pareto set with size polynomial in | I | and 1 / ε . Kai-Simon Goetzmann Compromise Solutions

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend