reference point methods
play

Reference Point Methods and Approximation in Multicriteria - PowerPoint PPT Presentation

Introduction Definitions and Notations Approximation Reference Point Methods and Approximation in Multicriteria Optimization C. B using, Kai-Simon Goetzmann , J. Matuschke and S. Stiller MDS Colloquium, June 25, 2012 Kai-Simon Goetzmann


  1. Introduction Definitions and Notations Approximation Reference Point Methods and Approximation in Multicriteria Optimization C. B¨ using, Kai-Simon Goetzmann , J. Matuschke and S. Stiller MDS Colloquium, June 25, 2012 Kai-Simon Goetzmann Reference Point Methods

  2. Introduction Definitions and Notations Approximation Multicriteria Optimization Kai-Simon Goetzmann Reference Point Methods

  3. Introduction Definitions and Notations Approximation Multicriteria Optimization Kai-Simon Goetzmann Reference Point Methods

  4. Introduction Definitions and Notations Approximation Multicriteria Optimization Kai-Simon Goetzmann Reference Point Methods

  5. Introduction Definitions and Notations Approximation Multicriteria Optimization Kai-Simon Goetzmann Reference Point Methods

  6. Introduction Definitions and Notations Approximation Multicriteria Optimization Y ⊆ ❩ k min { y ∶ y ∈ Y} where Kai-Simon Goetzmann Reference Point Methods

  7. Introduction Definitions and Notations Approximation Pareto Optimality Definition A solution y ∈ Y of min y ∈Y y is Pareto optimal if there is no y ′ ∈ Y ∖ { y } with y ′ ≤ y . y 2 Y y 1 Kai-Simon Goetzmann Reference Point Methods

  8. Introduction Definitions and Notations Approximation Pareto Optimality Definition A solution y ∈ Y of min y ∈Y y is Pareto optimal if there is no y ′ ∈ Y ∖ { y } with y ′ ≤ y . y 2 y 1 Kai-Simon Goetzmann Reference Point Methods

  9. Introduction Definitions and Notations Approximation Pareto Optimality Definition A solution y ∈ Y of min y ∈Y y is Pareto optimal if there is no y ′ ∈ Y ∖ { y } with y ′ ≤ y . y 2 Y P y 1 Kai-Simon Goetzmann Reference Point Methods

  10. Introduction Definitions and Notations Approximation Reference Point Solutions Motivation: ▸ identify a single, Pareto optimal, balanced solution ▸ reference point methods : part of many state-of-the-art MCDM tools, little theoretical background Kai-Simon Goetzmann Reference Point Methods

  11. Introduction Definitions and Notations Approximation 1 Introduction 2 Definitions and Notations 3 Approximation Kai-Simon Goetzmann Reference Point Methods

  12. Introduction Definitions and Notations Approximation 1 Introduction 2 Definitions and Notations 3 Approximation Kai-Simon Goetzmann Reference Point Methods

  13. Introduction Definitions and Notations Approximation Definition (Ideal Point) Given a multicriteria optimization problem min y ∈Y y , the ideal point y id = ( y id k ) is defined by 1 ,...,y id i = min ∀ i. y id y ∈Y y i y 2 Y sub-ideal reference y id points y 1 Kai-Simon Goetzmann Reference Point Methods

  14. Introduction Definitions and Notations Approximation Definition (Compromise Solution, Yu 1973) Given a multicriteria optimization problem min y ∈Y y with the ideal point y id ∈ ◗ k , and a norm ∥⋅∥ on ❘ k , the compromise solution w.r.t. ∥⋅∥ is y cs = min y ∈Y ∥ y − y id ∥ . y 2 y id y 1 Kai-Simon Goetzmann Reference Point Methods

  15. Introduction Definitions and Notations Approximation Definition (Compromise Solution, Yu 1973) Given a multicriteria optimization problem min y ∈Y y with the ideal point y id ∈ ◗ k , and a norm ∥⋅∥ on ❘ k , the compromise solution w.r.t. ∥⋅∥ is y cs = min y ∈Y ∥ y − y id ∥ . y 2 sub-ideal reference y id points y 1 Kai-Simon Goetzmann Reference Point Methods

  16. Introduction Definitions and Notations Approximation Definition (Reference Point Solution) Given a multicriteria optimization problem min y ∈Y y , a sub-ideal reference point y rp ∈ ◗ k , and a norm ∥⋅∥ on ❘ k , the reference point solution w.r.t. ∥⋅∥ is y rps = min y ∈Y ∥ y − y rp ∥ . y 2 y rp y 1 Kai-Simon Goetzmann Reference Point Methods

  17. Introduction Definitions and Notations Approximation Definition (Reference Point Solution) Given a multicriteria optimization problem min y ∈Y y , a sub-ideal reference point y rp ∈ ◗ k , and a norm ∥⋅∥ on ❘ k , the reference point solution w.r.t. ∥⋅∥ is y rps = min y ∈Y ∥ y − y rp ∥ . y 2 y rp y 1 Kai-Simon Goetzmann Reference Point Methods

  18. Introduction Definitions and Notations Approximation The norms we consider: 1 / p ∥ y ∥ p ∶= ( k i ) p ∈ [ 1 , ∞ ) ∑ y p ( ℓ p -Norm) , i = 1 ∥ y ∥ ∞ ∶= max (Maximum ( ℓ ∞ -)Norm) i = 1 ,...,k y i ⟨ ⟨ y ⟩ ⟩ p ∶= ∥ y ∥ ∞ + 1 p ∥ y ∥ 1 , p ∈ [ 1 , ∞ ] ( Cornered p -Norm) 1 1 p = 1 p = 2 p = 5 1 1 p = ∞ ℓ p -Norm Cornered p -Norm Degree of balancing controlled by adjusting p . Kai-Simon Goetzmann Reference Point Methods

  19. Introduction Definitions and Notations Approximation The norms we consider: 1 / p ∥ y ∥ p ∶= ( k i ) p ∈ [ 1 , ∞ ) ∑ y p ( ℓ p -Norm) , i = 1 ∥ y ∥ ∞ ∶= max (Maximum ( ℓ ∞ -)Norm) i = 1 ,...,k y i ⟨ ⟨ y ⟩ ⟩ p ∶= ∥ y ∥ ∞ + 1 p ∥ y ∥ 1 , p ∈ [ 1 , ∞ ] ( Cornered p -Norm) Weighted version: For any norm and λ ∈ ◗ k ,λ ≥ 0 ,λ ≠ 0 ∶ ∥ y ∥ λ = ∥( λ 1 y 1 ,λ 2 y 2 ,...,λ k y k )∥ . General properties: Norms we consider are ▸ monotone (if y ≥ y ′ then ∥ y ∥ ≥ ∥ y ′ ∥ ) ▸ decidable ( ∥ y ∥ can be computed in polynomial time) Kai-Simon Goetzmann Reference Point Methods

  20. Introduction Definitions and Notations Approximation 1 Introduction 2 Definitions and Notations 3 Approximation Kai-Simon Goetzmann Reference Point Methods

  21. Introduction Definitions and Notations Approximation Approximate Pareto sets Definition ( α -approximate Pareto set) Let Y P be the Pareto set of min y ∈Y y , and let α > 1 . Y α ⊆ Y is an α -approximate Pareto set if for all y ∈ Y P there is y ′ ∈ Y α such that i ≤ αy i ∀ i = 1 ,...,k y ′ Kai-Simon Goetzmann Reference Point Methods

  22. ◗ Introduction Definitions and Notations Approximation How to find approximate Pareto sets Theorem (Papadimitriou&Yannakakis,2000) Gap ( y,α ) tractable for all y ∈ ◗ k ⇒ α 2 -approximation for the Pareto set. α -approximation for the Pareto set ⇒ Gap ( y,α ) tractable for all y ∈ ◗ k . Kai-Simon Goetzmann Reference Point Methods

  23. Introduction Definitions and Notations Approximation How to find approximate Pareto sets Theorem (Papadimitriou&Yannakakis,2000) Gap ( y,α ) tractable for all y ∈ ◗ k ⇒ α 2 -approximation for the Pareto set. α -approximation for the Pareto set ⇒ Gap ( y,α ) tractable for all y ∈ ◗ k . Gap ( y,α ) : Given y ∈ ◗ k and α > 1 . y 2 y y 1 Kai-Simon Goetzmann Reference Point Methods

  24. Introduction Definitions and Notations Approximation How to find approximate Pareto sets Theorem (Papadimitriou&Yannakakis,2000) Gap ( y,α ) tractable for all y ∈ ◗ k ⇒ α 2 -approximation for the Pareto set. α -approximation for the Pareto set ⇒ Gap ( y,α ) tractable for all y ∈ ◗ k . Gap ( y,α ) : Given y ∈ ◗ k and α > 1 . y 2 y y ′ y 1 Kai-Simon Goetzmann Reference Point Methods

  25. Introduction Definitions and Notations Approximation How to find approximate Pareto sets Theorem (Papadimitriou&Yannakakis,2000) Gap ( y,α ) tractable for all y ∈ ◗ k ⇒ α 2 -approximation for the Pareto set. α -approximation for the Pareto set ⇒ Gap ( y,α ) tractable for all y ∈ ◗ k . Gap ( y,α ) : Given y ∈ ◗ k and α > 1 . y 2 y 2 y y y ′ no sol’n 1 α y y 1 y 1 Kai-Simon Goetzmann Reference Point Methods

  26. ◗ Introduction Definitions and Notations Approximation Approximate Pareto sets ⇔ approximate CS Kai-Simon Goetzmann Reference Point Methods

  27. ◗ Introduction Definitions and Notations Approximation Approximate Pareto sets ⇔ approximate CS Relate objective value to size of the vectors: y ∈Y ∥ y − y id ∥ + ∥ y id ∥ min �ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ�ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ� r ( y ) We call r ( y ) the relative distance . Kai-Simon Goetzmann Reference Point Methods

  28. ◗ Introduction Definitions and Notations Approximation Approximate Pareto sets ⇔ approximate CS Relate objective value to size of the vectors: y ∈Y ∥ y − y id ∥ + ∥ y id ∥ min �ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ�ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ� r ( y ) We call r ( y ) the relative distance . Theorem α -approximation of the Pareto set ⇒ α -approximation for min y ∈Y r ( y ) . Kai-Simon Goetzmann Reference Point Methods

  29. Introduction Definitions and Notations Approximation Approximate Pareto sets ⇔ approximate CS Relate objective value to size of the vectors: y ∈Y ∥ y − y id ∥ + ∥ y id ∥ min �ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ�ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ� r ( y ) We call r ( y ) the relative distance . Theorem α -approximation of the Pareto set ⇒ α -approximation for min y ∈Y r ( y ) . Theorem α -approximation for min y ∈Y r ( y ) ⇒ Gap ( y,β ) tractable for all y ∈ ◗ k , β ∈ Θ ( α ) . ⇒ β 2 -approximation for the Pareto set. Kai-Simon Goetzmann Reference Point Methods

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend