the power of compromise
play

The Power of Compromise Approximation in Multicriteria Optimization - PowerPoint PPT Presentation

Introduction Definitions and Notations Approximation The Power of Compromise Approximation in Multicriteria Optimization C. B using, Kai-Simon Goetzmann , J. Matuschke and S. Stiller FRICO, August 15, 2012 Kai-Simon Goetzmann The Power of


  1. Introduction Definitions and Notations Approximation The Power of Compromise Approximation in Multicriteria Optimization C. B¨ using, Kai-Simon Goetzmann , J. Matuschke and S. Stiller FRICO, August 15, 2012 Kai-Simon Goetzmann The Power of Compromise

  2. Introduction Definitions and Notations Approximation Multicriteria Optimization Kai-Simon Goetzmann The Power of Compromise

  3. Introduction Definitions and Notations Approximation Multicriteria Optimization Kai-Simon Goetzmann The Power of Compromise

  4. Introduction Definitions and Notations Approximation Multicriteria Optimization Kai-Simon Goetzmann The Power of Compromise

  5. Introduction Definitions and Notations Approximation Multicriteria Optimization Kai-Simon Goetzmann The Power of Compromise

  6. Introduction Definitions and Notations Approximation Multicriteria Optimization Y ⊆ ❩ k min { y ∶ y ∈ Y} where Kai-Simon Goetzmann The Power of Compromise

  7. Introduction Definitions and Notations Approximation Pareto Optimality Definition A solution y ∈ Y of min y ∈Y y is Pareto optimal if there is no y ′ ∈ Y ∖ { y } with y ′ ≤ y . y 2 Y y 1 Kai-Simon Goetzmann The Power of Compromise

  8. Introduction Definitions and Notations Approximation Pareto Optimality Definition A solution y ∈ Y of min y ∈Y y is Pareto optimal if there is no y ′ ∈ Y ∖ { y } with y ′ ≤ y . y 2 y 1 Kai-Simon Goetzmann The Power of Compromise

  9. Introduction Definitions and Notations Approximation Pareto Optimality Definition A solution y ∈ Y of min y ∈Y y is Pareto optimal if there is no y ′ ∈ Y ∖ { y } with y ′ ≤ y . y 2 Y P y 1 Kai-Simon Goetzmann The Power of Compromise

  10. Introduction Definitions and Notations Approximation Reference Point Solutions Motivation: ▸ identify a single, Pareto optimal, balanced solution ▸ reference point methods : part of many state-of-the-art MCDM tools, little theoretical background ▸ The Power of Compromise : all Pareto optimal solutions can be CS, approximation of CS yields approximate Pareto set Kai-Simon Goetzmann The Power of Compromise

  11. Introduction Definitions and Notations Approximation 1 Introduction 2 Definitions and Notations 3 Approximation Kai-Simon Goetzmann The Power of Compromise

  12. Introduction Definitions and Notations Approximation 1 Introduction 2 Definitions and Notations 3 Approximation Kai-Simon Goetzmann The Power of Compromise

  13. Introduction Definitions and Notations Approximation Definition (Ideal Point) Given a multicriteria optimization problem min y ∈Y y , the ideal point y id = ( y id 1 ,...,y id k ) is defined by y id i = min ∀ i. y ∈Y y i y 2 Y feasible reference y id points y 1 Kai-Simon Goetzmann The Power of Compromise

  14. Introduction Definitions and Notations Approximation Definition (Compromise Solution, Yu 1973) Given a multicriteria optimization problem min y ∈Y y with the ideal point y id ∈ ◗ k , and a norm ∥⋅∥ on ❘ k , the compromise solution w.r.t. ∥⋅∥ is y cs = min y ∈Y ∥ y − y id ∥ . y 2 y id y 1 Kai-Simon Goetzmann The Power of Compromise

  15. Introduction Definitions and Notations Approximation Definition (Compromise Solution, Yu 1973) Given a multicriteria optimization problem min y ∈Y y with the ideal point y id ∈ ◗ k , and a norm ∥⋅∥ on ❘ k , the compromise solution w.r.t. ∥⋅∥ is y cs = min y ∈Y ∥ y − y id ∥ . y 2 feasible reference y id points y 1 Kai-Simon Goetzmann The Power of Compromise

  16. Introduction Definitions and Notations Approximation Definition (Reference Point Solution) Given a multicriteria optimization problem min y ∈Y y , a feasible reference point y rp ∈ ◗ k , and a norm ∥⋅∥ on ❘ k , the reference point solution w.r.t. ∥⋅∥ is y rps = min y ∈Y ∥ y − y rp ∥ . y 2 y rp y 1 Kai-Simon Goetzmann The Power of Compromise

  17. Introduction Definitions and Notations Approximation Definition (Reference Point Solution) Given a multicriteria optimization problem min y ∈Y y , a feasible reference point y rp ∈ ◗ k , and a norm ∥⋅∥ on ❘ k , the reference point solution w.r.t. ∥⋅∥ is y rps = min y ∈Y ∥ y − y rp ∥ . y 2 y rp y 1 Kai-Simon Goetzmann The Power of Compromise

  18. Introduction Definitions and Notations Approximation The norms we consider: 1 / p ∥ y ∥ p ∶= ( k i ) p ∈ [ 1 , ∞ ) ∑ y p ( ℓ p -Norm) , i = 1 ∥ y ∥ ∞ ∶= max (Maximum ( ℓ ∞ -)Norm) i = 1 ,...,k y i ⟨ ⟨ y ⟩ ⟩ p ∶= ∥ y ∥ ∞ + 1 p ∥ y ∥ 1 , p ∈ [ 1 , ∞ ] ( Cornered p -Norm) 1 1 p = 1 p = 2 p = 5 p = ∞ 1 1 ℓ p -Norm Cornered p -Norm Degree of balancing controlled by adjusting p . Kai-Simon Goetzmann The Power of Compromise

  19. Introduction Definitions and Notations Approximation The norms we consider: 1 / p ∥ y ∥ p ∶ = ( k i ) p ∈ [ 1 , ∞) ∑ y p ( ℓ p -Norm) , i = 1 ∥ y ∥ ∞ ∶ = max (Maximum ( ℓ ∞ -)Norm) i = 1 ,...,k y i ⟨ ⟨ y ⟩ ⟩ p ∶ = ∥ y ∥ ∞ + 1 p ∥ y ∥ 1 , p ∈ [ 1 , ∞] ( Cornered p -Norm) Weighted version: For any norm and λ ∈ ◗ k ,λ ≥ 0 ,λ ≠ 0 ∶ ∥ y ∥ λ = ∥( λ 1 y 1 ,λ 2 y 2 ,...,λ k y k )∥ . General properties: Norms we consider are ▸ monotone (if y ≥ y ′ then ∥ y ∥ ≥ ∥ y ′ ∥ ) ▸ polynomially decidable ( ∥ y ∥ ≥ ∥ y ′ ∥ can be decided in polynomial time) Kai-Simon Goetzmann The Power of Compromise

  20. Introduction Definitions and Notations Approximation 1 Introduction 2 Definitions and Notations 3 Approximation Kai-Simon Goetzmann The Power of Compromise

  21. Introduction Definitions and Notations Approximation Approximate Pareto sets Definition ( α -approximate Pareto set) Let Y P be the Pareto set of min y ∈Y y , and let α > 1 . Y α ⊆ Y is an α -approximate Pareto set if for all y ∈ Y P there is y ′ ∈ Y α such that i ≤ αy i ∀ i = 1 ,...,k y ′ Kai-Simon Goetzmann The Power of Compromise

  22. ◗ Introduction Definitions and Notations Approximation How to find approximate Pareto sets Theorem (Papadimitriou&Yannakakis,2000) Gap ( y,α ) tractable for all y ∈ ◗ k ⇒ α 2 -approximation for the Pareto set. α -approximation for the Pareto set ⇒ Gap ( y,α ) tractable for all y ∈ ◗ k . Kai-Simon Goetzmann The Power of Compromise

  23. Introduction Definitions and Notations Approximation How to find approximate Pareto sets Theorem (Papadimitriou&Yannakakis,2000) Gap ( y,α ) tractable for all y ∈ ◗ k ⇒ α 2 -approximation for the Pareto set. α -approximation for the Pareto set ⇒ Gap ( y,α ) tractable for all y ∈ ◗ k . Gap ( y,α ) : Given y ∈ ◗ k and α > 1 . y 2 y y 1 Kai-Simon Goetzmann The Power of Compromise

  24. Introduction Definitions and Notations Approximation How to find approximate Pareto sets Theorem (Papadimitriou&Yannakakis,2000) Gap ( y,α ) tractable for all y ∈ ◗ k ⇒ α 2 -approximation for the Pareto set. α -approximation for the Pareto set ⇒ Gap ( y,α ) tractable for all y ∈ ◗ k . Gap ( y,α ) : Given y ∈ ◗ k and α > 1 . y 2 y y ′ y 1 Kai-Simon Goetzmann The Power of Compromise

  25. Introduction Definitions and Notations Approximation How to find approximate Pareto sets Theorem (Papadimitriou&Yannakakis,2000) Gap ( y,α ) tractable for all y ∈ ◗ k ⇒ α 2 -approximation for the Pareto set. α -approximation for the Pareto set ⇒ Gap ( y,α ) tractable for all y ∈ ◗ k . Gap ( y,α ) : Given y ∈ ◗ k and α > 1 . y 2 y 2 y y y ′ no sol’n 1 α y y 1 y 1 Kai-Simon Goetzmann The Power of Compromise

  26. ◗ Introduction Definitions and Notations Approximation Approximate Pareto sets ⇔ approximate CS Kai-Simon Goetzmann The Power of Compromise

  27. ◗ Introduction Definitions and Notations Approximation Approximate Pareto sets ⇔ approximate CS Relate objective value to size of the vectors: y ∈Y ∥ y − y id ∥ + ∥ y id ∥ min �ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ�ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ� r ( y ) We call r ( y ) the relative distance . Kai-Simon Goetzmann The Power of Compromise

  28. ◗ Introduction Definitions and Notations Approximation Approximate Pareto sets ⇔ approximate CS Relate objective value to size of the vectors: y ∈Y ∥ y − y id ∥ + ∥ y id ∥ min �ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ�ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ� r ( y ) We call r ( y ) the relative distance . Theorem α -approximation of the Pareto set ⇒ α -approximation for min y ∈Y r ( y ) . Kai-Simon Goetzmann The Power of Compromise

  29. Introduction Definitions and Notations Approximation Approximate Pareto sets ⇔ approximate CS Relate objective value to size of the vectors: y ∈Y ∥ y − y id ∥ + ∥ y id ∥ min �ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ�ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ� r ( y ) We call r ( y ) the relative distance . Theorem α -approximation of the Pareto set ⇒ α -approximation for min y ∈Y r ( y ) . Theorem α -approximation for min y ∈Y r ( y ) ⇒ Gap ( y,β ) tractable for all y ∈ ◗ k , β ∈ Θ ( α ) . ⇒ β 2 -approximation for the Pareto set. Kai-Simon Goetzmann The Power of Compromise

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend