compromise solutions
play

Compromise Solutions Kai-Simon Goetzmann, TU Berlin (Joint work - PowerPoint PPT Presentation

Introduction Definitions and Notations Approximation Compromise Solutions Kai-Simon Goetzmann, TU Berlin (Joint work with Christina B using, Jannik Matuschke and Sebastian Stiller) SCOR 2012 Kai-Simon Goetzmann, TU Berlin Compromise


  1. Introduction Definitions and Notations Approximation Compromise Solutions Kai-Simon Goetzmann, TU Berlin (Joint work with Christina B¨ using, Jannik Matuschke and Sebastian Stiller) SCOR 2012 Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  2. Introduction Definitions and Notations Approximation Multicriteria Optimization Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  3. Introduction Definitions and Notations Approximation Multicriteria Optimization Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  4. Introduction Definitions and Notations Approximation Multicriteria Optimization Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  5. Introduction Definitions and Notations Approximation Multicriteria Optimization Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  6. Introduction Definitions and Notations Approximation Multicriteria Optimization Y ⊆ ❩ k min { y ∶ y ∈ Y} where Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  7. Introduction Definitions and Notations Approximation Pareto Optimality Definition A solution y ∈ Y of min y ∈Y y is Pareto optimal if there is no y ′ ∈ Y ∖ { y } with y ′ ≤ y . y 2 Y y 1 Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  8. Introduction Definitions and Notations Approximation Pareto Optimality Definition A solution y ∈ Y of min y ∈Y y is Pareto optimal if there is no y ′ ∈ Y ∖ { y } with y ′ ≤ y . y 2 y 1 Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  9. Introduction Definitions and Notations Approximation Pareto Optimality Definition A solution y ∈ Y of min y ∈Y y is Pareto optimal if there is no y ′ ∈ Y ∖ { y } with y ′ ≤ y . y 2 Y P y 1 Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  10. Introduction Definitions and Notations Approximation Compromise Solutions Motivation: ▸ identify a single, Pareto optimal, balanced solution ▸ reference point methods : part of many state-of-the-art MCDM tools, little theoretical background Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  11. Introduction Definitions and Notations Approximation 1 Introduction 2 Definitions and Notations 3 Approximation Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  12. Introduction Definitions and Notations Approximation 1 Introduction 2 Definitions and Notations 3 Approximation Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  13. Introduction Definitions and Notations Approximation Definition (Ideal Point) Given a multicriteria optimization problem min y ∈Y y , the ideal point y ∗ = ( y ∗ 1 ,...,y ∗ k ) is defined by y ∗ i = min ∀ i. y ∈Y y i y 2 Y y ∗ y 1 Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  14. Introduction Definitions and Notations Approximation Definition (Compromise Solution, Yu 1973) Given a multicriteria optimization problem min y ∈Y y with the ideal point y ∗ ∈ ◗ k , the compromise solution w.r.t. the norm ∥⋅∥ on ❘ k is y cs = min y ∈Y ∥ y − y ∗ ∥ . y 2 y ∗ y 1 Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  15. Introduction Definitions and Notations Approximation Definition (Compromise Solution, Yu 1973) Given a multicriteria optimization problem min y ∈Y y with the ideal point y ∗ ∈ ◗ k , the compromise solution w.r.t. the norm ∥⋅∥ on ❘ k is y cs = min y ∈Y ∥ y − y ∗ ∥ . y 2 y ∗ y 1 Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  16. Introduction Definitions and Notations Approximation The norms we consider: 1 / p ∥ y ∥ p ∶ = ( k i ) p ∈ [ 1 , ∞ ) y p ( ℓ p -Norm) ∑ , i = 1 ∥ y ∥ ∞ ∶ = max (Maximum ( ℓ ∞ -)Norm) i = 1 ,...,k y i ⟨⟨ y ⟩⟩ p ∶ = ∥ y ∥ ∞ + 1 p ∥ y ∥ 1 , p ∈ [ 1 , ∞ ] ( Cornered p -Norm) 1 1 p = 1 p = 2 p = 5 p = ∞ 1 1 ℓ p -Norm Cornered p -Norm Degree of balancing controlled by adjusting p . Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  17. Introduction Definitions and Notations Approximation The norms we consider: 1 / p ∥ y ∥ p ∶ = ( k i ) p ∈ [ 1 , ∞ ) y p ( ℓ p -Norm) ∑ , i = 1 ∥ y ∥ ∞ ∶ = max (Maximum ( ℓ ∞ -)Norm) i = 1 ,...,k y i ⟨⟨ y ⟩⟩ p ∶ = ∥ y ∥ ∞ + 1 p ∥ y ∥ 1 , p ∈ [ 1 , ∞ ] ( Cornered p -Norm) Weighted version: For any norm and λ ∈ ◗ k ,λ ≥ 0 ,λ ≠ 0 ∶ ∥ y ∥ λ = ∥( λ 1 y 1 ,λ 2 y 2 ,...,λ k y k )∥ . Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  18. Introduction Definitions and Notations Approximation Known Properties Gearhardt 1979: ▸ for p < ∞ all compromise solutions are Pareto optimal ▸ all Pareto optimal solution are a compromise solution, for p big enough y 2 Y P y 1 Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  19. Introduction Definitions and Notations Approximation 1 Introduction 2 Definitions and Notations 3 Approximation Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  20. Introduction Definitions and Notations Approximation Approximate Pareto sets Definition ( α -approximate Pareto set) Let Y P be the Pareto set of min y ∈Y y , and let α ≥ 1 . Y α ⊆ Y is an α -approximate Pareto set if for all y ∈ Y P there is y ′ ∈ Y α such that ∀ i = 1 ,...,k y ′ i ≤ αy i Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  21. Introduction Definitions and Notations Approximation Approximate Pareto sets Definition ( α -approximate Pareto set) Let Y P be the Pareto set of min y ∈Y y , and let α ≥ 1 . Y α ⊆ Y is an α -approximate Pareto set if for all y ∈ Y P there is y ′ ∈ Y α such that ∀ i = 1 ,...,k y ′ i ≤ αy i Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  22. Introduction Definitions and Notations Approximation Approximate Pareto sets Definition ( α -approximate Pareto set) Let Y P be the Pareto set of min y ∈Y y , and let α ≥ 1 . Y α ⊆ Y is an α -approximate Pareto set if for all y ∈ Y P there is y ′ ∈ Y α such that ∀ i = 1 ,...,k y ′ i ≤ αy i Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  23. Introduction Definitions and Notations Approximation Approximate Pareto sets Definition ( α -approximate Pareto set) Let Y P be the Pareto set of min y ∈Y y , and let α ≥ 1 . Y α ⊆ Y is an α -approximate Pareto set if for all y ∈ Y P there is y ′ ∈ Y α such that ∀ i = 1 ,...,k y ′ i ≤ αy i Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  24. Introduction Definitions and Notations Approximation How to find approximate Pareto sets Theorem (Papadimitriou&Yannakakis,2000) Gap ( y,α ) tractable for all y ∈ ◗ k ⇒ α 2 -approximation for the Pareto set. α -approximation for the Pareto set Gap ( y,α ) tractable for all y ∈ ◗ k . ⇒ Gap ( y,α ) : Given y ∈ ◗ k and α ≥ 1 . Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  25. Introduction Definitions and Notations Approximation How to find approximate Pareto sets Theorem (Papadimitriou&Yannakakis,2000) Gap ( y,α ) tractable for all y ∈ ◗ k ⇒ α 2 -approximation for the Pareto set. α -approximation for the Pareto set Gap ( y,α ) tractable for all y ∈ ◗ k . ⇒ Gap ( y,α ) : Given y ∈ ◗ k and α ≥ 1 . y 2 y y 1 Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  26. Introduction Definitions and Notations Approximation How to find approximate Pareto sets Theorem (Papadimitriou&Yannakakis,2000) Gap ( y,α ) tractable for all y ∈ ◗ k ⇒ α 2 -approximation for the Pareto set. α -approximation for the Pareto set Gap ( y,α ) tractable for all y ∈ ◗ k . ⇒ Gap ( y,α ) : Given y ∈ ◗ k and α ≥ 1 . y 2 y y ′ y 1 Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  27. Introduction Definitions and Notations Approximation How to find approximate Pareto sets Theorem (Papadimitriou&Yannakakis,2000) Gap ( y,α ) tractable for all y ∈ ◗ k ⇒ α 2 -approximation for the Pareto set. α -approximation for the Pareto set Gap ( y,α ) tractable for all y ∈ ◗ k . ⇒ Gap ( y,α ) : Given y ∈ ◗ k and α ≥ 1 . y 2 y 2 y y y ′ no sol’n 1 α y y 1 y 1 Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  28. ◗ Introduction Definitions and Notations Approximation Approximate Pareto sets ⇔ approximate CS Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  29. ◗ Introduction Definitions and Notations Approximation Approximate Pareto sets ⇔ approximate CS Relate objective value to size of the vectors: y ∈Y ∥ y − y ∗ ∥ + ∥ y ∗ ∥ min �ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ�ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ� r ( y ) We call r ( y ) the relative distance . Kai-Simon Goetzmann, TU Berlin Compromise Solutions

  30. ◗ Introduction Definitions and Notations Approximation Approximate Pareto sets ⇔ approximate CS Relate objective value to size of the vectors: y ∈Y ∥ y − y ∗ ∥ + ∥ y ∗ ∥ min �ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ�ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ� r ( y ) We call r ( y ) the relative distance . Theorem α -approximation of the Pareto set α -approximation for min y ∈Y r ( y ) . ⇒ Kai-Simon Goetzmann, TU Berlin Compromise Solutions

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend