replica analysis of the 1d kpz equation
play

Replica analysis of the 1D KPZ equation T. Sasamoto (Based on - PowerPoint PPT Presentation

Replica analysis of the 1D KPZ equation T. Sasamoto (Based on collaborations with T. Imamura) 5 Dec 2011 @ Kochi References: arxiv:1105.4659, 1111.4634 1 1. Introduction: 1D surface growth Paper combustion, bacteria colony, crystal


  1. Replica analysis of the 1D KPZ equation T. Sasamoto (Based on collaborations with T. Imamura) 5 Dec 2011 @ Kochi References: arxiv:1105.4659, 1111.4634 1

  2. 1. Introduction: 1D surface growth • Paper combustion, bacteria colony, crystal growth, liquid crystal turbulence • Non-equilibrium statistical mechanics • Stochastic interacting particle systems • Integrable systems 2

  3. Kardar-Parisi-Zhang(KPZ) equation 1986 Kardar Parisi Zhang √ 2 λ ( ∂ x h ( x, t )) 2 + ν∂ 2 ∂ t h ( x, t ) = 1 x h ( x, t ) + Dη ( x, t ) where η is the Gaussian noise with covariance ⟨ η ( x, t ) η ( x ′ , t ′ ) ⟩ = δ ( x − x ′ ) δ ( t − t ′ ) • The Brownian motion is stationary. • Dynamical RG analysis: h ( x = 0 , t ) ≃ vt + cξt 1 / 3 KPZ universality class • Now revival: New analytic and experimental developments 3

  4. A discrete model: ASEP as a surface growth model ASEP(asymmetric simple exclusion process) q p q p q Mapping to surface growth 4

  5. Stationary measure ASEP · · · Bernoulli measure: each site is independent and occupied with prob. ρ ( 0 < ρ < 1 ). Current is ρ (1 − ρ ) . · · · · · · ρ ρ ρ ρ ρ ρ ρ -3 -2 -1 0 1 2 3 Surface growth · · · Random walk height profile 5

  6. Surface growth and 2 initial conditions besides stationary Flat Droplet ↕ ↕ ↕ ↕ Wedge Step Alternating Integrated current N ( x, t ) in ASEP ⇔ Height h ( x, t ) in surface growth 6

  7. Current distributions for ASEP with wedge initial conditions 2000 Johansson (TASEP) 2008 Tracy-Widom (ASEP) N (0 , t/ ( q − p )) ≃ 1 4 t − 2 − 4 / 3 t 1 / 3 ξ TW Here N ( x = 0 , t ) is the integrated current of ASEP at the origin and ξ TW obeys the GUE Tracy-Widom distributions; F TW ( s ) = P [ ξ TW ≤ s ] = det(1 − P s K Ai P s ) 0.5 0.4 0.3 where K Ai is the Airy kernel 0.2 0.1 ∫ ∞ 0.0 K Ai ( x, y ) = d λ Ai( x + λ )Ai( y + λ ) � 6 � 4 � 2 0 2 s 0 7

  8. Current Fluctuations of ASEP with flat initial conditions: GOE TW distribution More generalizations: stationary case: F 0 distribution, multi-point fluctuations, etc They can be measured experimentally! The KPZ equation itself can be treated analytically! 8

  9. Random matrix theory GUE (Gaussian Unitary Ensemble) hermitian matrices   · · · u 11 u 12 + iv 12 u 1 N + iv 1 N   u 12 − iv 12 · · · u 22 u 2 N + iv 2 N     A = . . . ...   . . .  . . .      u 1 N − iv 1 N u 2 N − iv 2 N · · · u NN u jj ∼ N (0 , 1 / 2) u jk , v jk ∼ N (0 , 1 / 4) The largest eigenvalue x max · · · GUE TW distribution GOE (Gaussian Orthogonal Ensemble) real symmetric matrices · · · GOE TW distribution 9

  10. Experiments by liquid crystal turbulence 2010-2011 Takeuchi Sano 10

  11. See Takeuchi Sano Sasamoto Spohn, Sci. Rep. 1,34(2011) 11

  12. The narrow wedge KPZ equation 2010 Sasamoto Spohn, Amir Corwin Quastel • Narrow wedge initial condition • Based on (i) the fact that the weakly ASEP is KPZ equation (1997 Bertini Giacomin) and (ii) a formula for step ASEP by 2009 Tracy Widom • The explicit distribution function for finite t • The KPZ equation is in the KPZ universality class Before this 2009 Bala´ zs, Quastel, and Sepp¨ al¨ ainen The 1/3 exponent for the stationary case 12

  13. Narrow wedge initial condition Scalings h → λ x → α 2 x, t → 2 να 4 t, 2 ν h where α = (2 ν ) − 3 / 2 λD 1 / 2 . We can and will do set ν = 1 2 , λ = D = 1 . We consider the droplet growth with macroscopic shape  − x 2 / 2 t for | x | ≤ t/δ ,  h ( x, t ) = (1 / 2 δ 2 ) t − | x | /δ for | x | > t/δ  which corresponds to taking the following narrow wedge initial conditions: h ( x, 0) = −| x | /δ , δ ≪ 1 13

  14. h(x,t) 2 λ t/ δ x 14

  15. Distribution h ( x, t ) = − x 2 / 2 t − 12 γ 3 1 t + γ t ξ t where γ t = (2 t ) − 1 / 3 . The distribution function of ξ t ∫ ∞ − e γ t ( s − u ) ] [ F t ( s ) = P [ ξ t ≤ s ] = 1 − exp −∞ ( ) × det(1 − P u ( B t − P Ai ) P u ) − det(1 − P u B t P u ) d u where P Ai ( x, y ) = Ai( x )Ai( y ) . 15

  16. P u is the projection onto [ u, ∞ ) and the kernel B t is ∫ ∞ d λ (e γ t λ − 1) − 1 B t ( x, y ) = K Ai ( x, y ) + 0 ( ) × Ai( x + λ )Ai( y + λ ) − Ai( x − λ )Ai( y − λ ) . 16

  17. Developments (not all!) • 2010 Calabrese Le Doussal Rosso, Dotsenko Replica • 2010 Corwin Quastel Half-BM by step Bernoulli ASEP • 2010 O’Connell A directed polymer model related to quantum Toda lattice • 2010 Prolhac Spohn Multi-point distributions by replica • 2011 Calabrese Le Dossal Flat case by replica • 2011 Corwin et al Tropical RSK for inverse gamma polymer • 2011 Borodin Corwin Macdonald process • 2011 Imamura Sasamoto Half-BM and stationary case by replica 17

  18. Replica analysis of KPZ equation • Rederivation of the narrow wedge distribution by 2010 Calabrese Le Doussal Rosso, Dotsenko. Arrives at the correct formula by way of a divergent sum. Now there is a rigorous version for a discrete model. • In a sense simpler than through ASEP • Suited for generaliations Multipoint distributions (2010 Prolhac Spohn), Flat case (2011 Calabrese Le Dossal ), Half-BM (2011 Imamura Sasamoto), Stationary case (2011 Imamura Sasamoto). 18

  19. 2. Stationary case Two sided BM  B − ( − x ) , x < 0 ,  h ( x, 0) = B + ( x ) , x > 0 ,  where B ± ( x ) are two independent standard BMs We consider a generalized initial condition  ˜ B ( − x ) + v − x, x < 0 ,  h ( x, 0) = B ( x ) − v + x, x > 0 ,  where B ( x ) , ˜ B ( x ) are independent standard BMs and v ± are the strength of the drifts. 19

  20. Result For the generalized initial condition with v ± h ( x, t ) + γ 3 [ ] t / 12 ≤ γ t s F v ± ,t ( s ) := Prob ∫ ∞ Γ( v + + v − ) [ ] due − e γt ( s − u ) ν v ± ,t ( u ) 1 − = Γ( v + + v − + γ − 1 d/ds ) −∞ t Here ν v ± ,t ( u ) is expressed as a difference of two Fredholm determinants, 1 − P u ( B Γ t − P Γ 1 − P u B Γ ( ) ( ) ν v ± ,t ( u ) = det Ai ) P u − det t P u , where P s represents the projection onto ( s, ∞ ) , ξ 1 , 1 ξ 2 , 1 ( ) ( ) P Γ Ai ( ξ 1 , ξ 2 ) = Ai Γ Ai Γ , v − , v + , v + , v − Γ Γ γ t γ t 20

  21. ∫ ∞ 1 ( ξ 1 + y, 1 ) B Γ 1 − e − γ t y Ai Γ t ( ξ 1 , ξ 2 ) = dy , v − , v + Γ γ t −∞ ξ 2 + y, 1 ( ) × Ai Γ , v + , v − , Γ γ t and Γ ( a, b, c, d ) = 1 Γ ( ibz + d ) ∫ dze iza + i z 3 Ai Γ Γ ( − ibz + c ) , 3 2 π Γ i d b where Γ z p represents the contour from −∞ to ∞ and, along the way, passing below the pole at z = id/b . 21

  22. Height distribution for the stationary KPZ equation ∫ ∞ 1 duγ t e γ t ( s − u )+ e − γt ( s − u ) ν 0 ,t ( u ) F 0 ,t ( s ) = Γ(1 + γ − 1 d/ds ) −∞ t where ν 0 ,t ( u ) is obtained from ν v ± ,t ( u ) by taking v ± → 0 limit. 0.4 γ t = 1 γ t = ∞ 0.3 0.2 0.1 0.0 4 2 0 2 4 s Figure 1: Stationary height distributions for the KPZ equation for γ t = 1 case. The solid curve is F 0 . 22

  23. Stationary 2pt correlation function C ( x, t ) = ⟨ ( h ( x, t ) − ⟨ h ( x, t ) ⟩ ) 2 ⟩ ( ) g t ( y ) = (2 t ) − 2 / 3 C (2 t ) 2 / 3 y, t 2.0 γ t = 1 γ t = ∞ 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 y Figure 2: Stationary 2pt correlation function g ′′ t ( y ) for γ t = 1 . The solid curve is the corresponding quantity in the scaling limit g ′′ ( y ) . 23

  24. Derivation Cole-Hopf transformation 1997 Bertini and Giacomin h ( x, t ) = log ( Z ( x, t )) Z ( x, t ) is the solution of the stochastic heat equation, ∂ 2 Z ( x, t ) ∂Z ( x, t ) = 1 + η ( x, t ) Z ( x, t ) . ∂x 2 ∂t 2 and can be considered as directed polymer in random potential η . cf. Hairer Well-posedness of KPZ equation without Cole-Hopf 24

  25. Feynmann-Kac and Generating function Feynmann-Kac expression for the partition function, [∫ t ( ] ) Z ( x, t ) = E x exp η ( b ( s ) , t − s ) ds Z ( b ( t ) , 0) 0 We consider the N th replica partition function ⟨ Z N ( x, t ) ⟩ and compute their generating function G t ( s ) defined as − e − γ t s ) N ∞ ( γ 3 t ∑ Z N (0 , t ) e N ⟨ ⟩ G t ( s ) = 12 N ! N =0 with γ t = ( t/ 2) 1 / 3 . 25

  26. δ -Bose gas Taking the Gaussian average over the noise η , one finds that the replica partition function can be written as ⟨ Z N ( x, t ) ⟩   ∫ ∞ ∫ x j ( t )= x ∫ t N N ) 2 1 ( dx ∏ ∑ = dy j D [ x j ( τ )] exp  − dτ  2 dτ −∞ x j (0)= y j 0 j =1 j =1 ( N   N ⟨ )⟩ ∑  × ∑ − δ ( x j ( τ ) − x k ( τ )) exp h ( y k , 0)  j ̸ = k =1 k =1 = ⟨ x | e − H N t | Φ ⟩ . 26

  27. H N is the Hamiltonian of the δ -Bose gas, N N ∂ 2 H N = − 1 − 1 ∑ ∑ δ ( x j − x k ) , ∂x 2 2 2 j j =1 j ̸ = k | Φ ⟩ represents the state corresponding to the initial condition. We compute ⟨ Z N ( x, t ) ⟩ by expanding in terms of the eigenstates of H N , ∑ ⟨ x | Ψ z ⟩⟨ Ψ z | Φ ⟩ e − E z t ⟨ Z ( x, t ) N ⟩ = z where E z and | Ψ z ⟩ are the eigenvalue and the eigenfunction of H N : H N | Ψ z ⟩ = E z | Ψ z ⟩ . 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend