riemann surfaces for kpz fluctuations in finite volume
play

Riemann surfaces for KPZ fluctuations in finite volume Sylvain - PowerPoint PPT Presentation

Riemann surfaces for KPZ fluctuations in finite volume Sylvain Prolhac Laboratoire de physique th eorique Universit e Paul Sabatier, Toulouse 3 September 2020 RAQIS20, Annecy I ASEP and KPZ fluctuations II Bethe ansatz and Riemann


  1. Riemann surfaces for KPZ fluctuations in finite volume Sylvain Prolhac Laboratoire de physique th´ eorique Universit´ e Paul Sabatier, Toulouse 3 September 2020 RAQIS20, Annecy

  2. I ASEP and KPZ fluctuations II Bethe ansatz and Riemann surfaces III Height fluctuations of TASEP IV g → ∞ ⇒ KPZ fluctuations

  3. KPZ fluctuations in 1 + 1 dimension universal statistics random field h ( x, t ) time evolution of probabilities integrable Interface growth Directed polymer Random unitary dynamics in random medium height h ( x, t ) entanglement entropy free energy (Nahum-Ruhman-Vijay-Haah 2017) i j � E = ε i,j (Takeuchi-Sano 2010) ( i,j ) ∈ path 1D classical / quantum fluids Localization Driven particles with few conservation laws conductance g current normal modes hydrodynamics (Prior-Somoza-Ortu˜ no 2005) (Van Beijeren 2012, Spohn 2014) log g ≃ − 2 L/ℓ + α ( L/ℓ ) 1 / 3 h ∂ t ρ = ∂ 2 x ρ + ∂ x J ( ρ ) + ∂ x ξ

  4. Kardar-Parisi-Zhang (KPZ) equation Stable thermodynamic phase growing inside metastable phase √ x h ( x, t ) − λ ( ∂ x h ( x, t )) 2 + KPZ equation ∂ t h ( x, t ) = ν ∂ 2 D ξ ( x, t ) Gaussian white noise ξ � ξ ( x, t ) � = 0 h ( x, t ) � ξ ( x, t ) ξ ( x ′ , t ′ ) � = δ ( x − x ′ ) δ ( t − t ′ ) δh 2 λδt Boundary conditions for system of size ℓ δx 2 λδt � δh = • periodic h ( x + ℓ, t ) = h ( x, t ) 1 − � δh � 2 • open ∂ x h (0 , t ) = ρ − ∂ x h ( ℓ, t ) = ρ + x δx Singular non-linear stochastic PDE (Hairer, Kupiainen, Gubinelli-Perkowski) Only one parameter λ after rescaling space, time, height in finite volume Large scale behaviour: two fixed points under renormalization group flow • Edwards-Wilkinson λ → 0 (repulsive) z = 2 interface at equilibrium • KPZ fixed point λ → ∞ (attractive) z = 3 / 2 irreversible evolution Universality (at fixed points, but also RG flow EW → KPZ)

  5. Asymmetric simple exclusion process (ASEP) Continuous time Markov process q L sites, N particles, exclusion 1 Total time-integrated current Q ( t ) = � L i =1 ( H i ( t ) − H i (0)) � e γQ ( t ) � � q 1 �C| e tM ( γ ) | P 0 � = C∈ Ω ∆ = ( q 1 / 2 + q − 1 / 2 ) / 2 ≥ 1 M ( γ ) ∼ H XXZ twisted and non-Hermitian √ KPZ equation at large scales for typical height fluctuations when 1 − q ∼ λ/ L ∆ − 1 ∼ λ 2 /L • Edwards-Wilkinson fixed point λ → 0: SSEP q = 1 • KPZ fixed point λ → ∞ : TASEP q = 0 (∆ → ∞ ) sufficient Conditioning on small / large height for ASEP beyond KPZ regime ⇒ crossover phase separation / conformal invariance (Karevski-Sch¨ utz 2017)

  6. KPZ fluctuations in finite volume: several approaches KPZ fixed point in finite volume: random field h ( x, t ) x ≡ x + 1  flat h 0 ( x ) = 0  Initial condition h ( x, 0) = h 0 ( x ): sharp wedge h 0 ( x ) = −| x | / 0  stationary h 0 ( x ) = b ( x ) Brownian bridge General n -point statistics P ( h ( x 1 , t 1 ) > u 1 , . . . , h ( x n , t n ) > u n ) TASEP: expansion over Bethe eigenstates • Euler-Maclaurin asymptotics: singularities, very tedious (P. 2016) • Riemann surfaces: analytic continuation eigenstates ⇒ simpler expressions same kind of structures TASEP and KPZ (P. 2020) TASEP: integral formula for propagator ⇒ rigorous approach (Baik-Liu 2018) Replica method: continuum ⇒ attractive δ -Bose gas (Brunet-Derrida 2000)

  7. I ASEP and KPZ fluctuations II Bethe ansatz and Riemann surfaces 3 2 1 C (1 − y ) L = ( − 1) N − 1 y N ∼ � C 0 � 1 � 2 � 3 � 1 0 1 2 3 4 III Height fluctuations of TASEP IV g → ∞ ⇒ KPZ fluctuations

  8. Bethe ansatz for TASEP (∆ → ∞ ) ASEP 0 < q < 1 (∆ > 1) TASEP q = 0 � 1 − y j � L N � y j − qy k Bethe C (1 − y j ) L = ( − 1) N − 1 y N e Lγ = − j equations 1 − qy j qy j − y k k =1 � � � N � N y j 1 − q 1 − q Eigenvalue E 1 − y j − j =1 j =1 1 − qy j 1 − y j � � x σ ( j ) � � N � � e γ 1 − y j y − k (1 − y j ) x k e γx k Eigenvector ψ ( � x ) A σ ( � y ) det j 1 − qy j j,k σ ∈ S N j =1 � �� 1 − y j �� N � L � N y j Gaudin det. � qy j − y k det ∂ y i log 1 − qy j y j − qy k � ψ ( � x ) | ψ ( � x ) � N + ( L − N ) y j k =1 i,j j =1 “Mean field” Bethe equations for TASEP: parameter C = e Lγ � N k =1 y k ⇒ compact Riemann surface R N Symmetric functions of N Bethe roots y j ⇒ meromorphic functions on R N

  9. Bethe root functions y j ( C ) Domains y j ( C \ R − ) L = 12 N = 4 3 C (1 − y ) L + ( − 1) N y N = 0 | C | = 0 . 1 | C ∗ | | C | = 0 . 5 | C ∗ | | C | = | C ∗ | | C | = 2 | C ∗ | Generalized Cassini ovals | C | | 1 − y | L = | y | N 2 y 6 y 7 | C | = 100 | C ∗ | | C | < | C ∗ | | C | = | C ∗ | | C | > | C ∗ | y 5 1 y 8 y 4 y 3 0 y 2 y 1 y 9 � 1 y 12 L solutions y j ( C ) analytic in C \ R − Generators of analytic continuations y 10 y 11 � 2 A ∞ A 0 A 0 , A ∞ : y j → y k C ∗ 0 Group G = S L A − 1 A − 1 � 3 ∞ 0 iff L, N co-prime � 1 0 1 2 3 4

  10. Riemann surface R 1 ∼ � C for a single Bethe root L sheets glued together along cuts ( −∞ , C ∗ ), Riemann surface R 1 ⇒ ( C ∗ , 0) according to analytic continuations of y j [ C, j ], C ∈ C , j ∈ [ [1 , L ] ] Identifications Meromorphic function y on R 1 y − 1 (0) = [0 , 1] = . . . = [0 , N ] y ([ C, j ]) = y j ( C ) y − 1 ( ∞ ) = [0 , N + 1] = . . . = [0 , L ] y − 1 (1) = [ ∞ , 1] = . . . = [ ∞ , L ] ρ y − 1 ( − Covering map π 1 : R 1 → � 1 − ρ ) = [ C ∗ − i ǫ, 1] = [ C ∗ + i ǫ, N ] C π 1 ([ C, j ]) = C = [ C ∗ − i ǫ, N + 1] = [ C ∗ + i ǫ, L ] Riemann-Hurwitz formula: genus Covering map π : M → N degree d Ramification index e p , p ∈ M : � g M = d ( g N − 1) + 1 + 1 p ∈M ( e p − 1) winding number π (circle around p ) 2 Ramification points p ∈ M : e p ≥ 2 Euler charac. χ = 2 − 2 g = V − E + F ⇒ branch points π ( p ) ∈ N for graph on M linking ramif. points R 1 : genus g = 0 ⇔ R 1 ∼ � Riemann sphere C

  11. Riemann surface R N for sym. functions N Bethe roots Eigenstate: choice N Bethe roots among L Riemann surface R N : [ C, J ] ⇒ Symmetric functions s ( y j 1 ( C ) , . . . , y j N ( C )) C ∈ C , J ⊂ [ [1 , L ] ], | J | = N R N → � � Covering map π N : C TASEP height fluctuations: tr π N = [ C, J ] �→ C J Several connected components Genus if L and N not co-prime L \ N L \ N 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 2 1 · · · · · · · · 2 0 · · · · · · · · 3 1 1 · · · · · · · 3 0 0 · · · · · · · 4 1 2 1 · · · · · · 4 0 0 0 · · · · · · 5 1 1 1 1 · · · · · 5 0 0 0 0 · · · · · 6 1 2 3 2 1 · · · · 6 0 0 0 0 0 · · · · · · · · · · 7 1 1 1 1 1 1 7 0 0 1 1 0 0 · · · · 8 1 2 1 6 1 2 1 8 0 0 2 1 2 0 0 · · 9 1 1 4 1 1 4 1 1 9 0 0 1 7 7 1 0 0 10 1 2 1 3 11 3 1 2 1 10 0 0 4 8 7 8 4 0 0

  12. I ASEP and KPZ fluctuations II Bethe ansatz and Riemann surfaces III Height fluctuations of TASEP � � � n � � d C 1 . . . d C n P ( H i ℓ ( t ℓ ) ≥ H ℓ , ℓ ∈ [ [1 , n ] ]) = (2i π ) n C n | C n | <...< | C 1 | ℓ =1 J ℓ ⊂ [ [1 ,L ] ] , | J ℓ | = N � � � � �� � [ Cℓ,Jℓ ] L µ ([ C, · ]) η ([ C, · ]) − N µ ([ C, · ]) d C NL L − N µ ([ C, · ]) 2 + � n H ℓ − H ℓ − 1 +( t ℓ − t ℓ − 1 ) O C L − N L L ℓ =1 e � � � NL d B � n − 1 B µ ([ C ℓ B, · ]) µ ([ C ℓ +1 B, · ]) ( C ℓ − C ℓ +1 ) e L − N γ ℓ =1 IV g → ∞ ⇒ KPZ fluctuations

  13. Generating function of TASEP height Height H i ( t ) at site i and time t Height increments H i ( t ) − H i (0) ∈ N Initial height H i (0) = � i j =1 ( N L − n i ) One-point generating function average height e γ � L � i =1 ( H i ( t ) − H i (0)) � � �C| e tM ( γ ) | P 0 � M ( γ ) ∼ H XXZ = C∈ Ω Markov property (memoryless) ⇒ generating function at times 0 < t 1 < . . . < t n � n � n � � 1 (e − γ ℓ S iℓ e ( t ℓ − t ℓ − 1 ) M ( � n � γ ℓ ( H iℓ ( t ℓ ) − H iℓ (0)) � γ ℓ S iℓ | P 0 � � � m = ℓ γ m /L ) ) e = �C| e ℓ =1 ℓ =1 C∈ Ω ℓ = n � 1 � � N S i |C� = j =1 [ x j ] i |C� with [ x ] i positions counted from site i L

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend