exact solutions for two dimensional reactive flow for
play

Exact Solutions for Two-Dimensional Reactive Flow for Verification - PowerPoint PPT Presentation

Exact Solutions for Two-Dimensional Reactive Flow for Verification of Numerical Algorithms Joseph M. Powers (powers@nd.edu) University of Notre Dame; Notre Dame, IN Tariq D. Aslam (aslam@lanl.gov) Los Alamos National Laboratory; Los Alamos, NM


  1. Exact Solutions for Two-Dimensional Reactive Flow for Verification of Numerical Algorithms Joseph M. Powers (powers@nd.edu) University of Notre Dame; Notre Dame, IN Tariq D. Aslam (aslam@lanl.gov) Los Alamos National Laboratory; Los Alamos, NM 43 rd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada 10-13 January 2005

  2. Motivation • Computational tools are critical in design of aerospace vehicles which employ high speed reactive flow. • Comparing computational predictions with those of exact solutions in grid resolution studies is a robust verification. • We develop a new exact solution and employ it to verify a modern shock-capturing reactive flow algorithm for flows with an immersed boundary.

  3. Verification and Validation • verification: solving the equations right. • validation: solving the right equations. • Focus here is exclusively on verification. • Limiting assumptions necessary for exact solution pre- clude meaningful validation exercise. • Verification and validation always necessary but never sufficient: finite uncertainty must be tolerated.

  4. Partial Review of Oblique Detonations • Samaras, Can. J. Research , 1948. • Gross, AIAA J. , 1963. • Lee, AIAA J. , 1966. • Pratt, J. Propul. Power , 1991. • Powers, et al. , AIAA J., Phys. Fluids, Shock Waves , 1992-96.

  5. Oblique Detonation Schematic y β Y u s s 1 i n o β c • Straight shock. 1 u u 1 p = p 1 reaction zone 1 ~ = ρ = ρ λ k • Curved wedge. streamline c 1 o h T = T s 1 t λ = 0 h g i a r t s • Orthogonal coordinate curved wedge β system aligned with x shock. X

  6. Model: Reactive Euler Equations • two-dimensional, • steady, • inviscid, • irrotational, • one step kinetics with zero activation energy, • calorically perfect ideal gases with identical molecular masses and specific heats.

  7. Model: Reactive Euler PDEs ∂X ( ρU ) + ∂ ∂ ∂Y ( ρV ) = 0 , ∂ + ∂ ρU 2 + p ` ´ ∂Y ( ρUV ) = 0 , ∂X ∂X ( ρUV ) + ∂ ∂ ρV 2 + p ` ´ = 0 , ∂Y „ „ «« ∂ e + 1 2( U 2 + V 2 ) + p ρU ∂X ρ „ „ «« + ∂ e + 1 2( U 2 + V 2 ) + p ρV = 0 , ∂Y ρ ∂X ( ρUλ ) + ∂ ∂ ∂Y ( ρV λ ) = αρ (1 − λ ) H ( T − T i ) , 1 p = e ρ − λq, γ − 1 p = ρRT.

  8. Model Reductions: PDEs → ODEs Assume no Y variation, so d dX ( ρU ) = 0 , d ρU 2 + p � � = 0 , dX d dX ( ρUV ) = 0 , d � � e + 1 2( U 2 + V 2 ) + p �� ρU = 0 , dX ρ d dX ( ρUλ ) = αρ (1 − λ ) H ( T − T i ) .

  9. Model Reductions: ODEs → DAEs ρU = ρ 1 u 1 sin β, ρU 2 + p 1 sin 2 β + p 1 , ρ 1 u 2 = V = u 1 cos β, γ p ρ − λq + 1 γ p 1 + 1 U 2 + u 2 1 cos 2 β 2 u 2 � � = 1 , γ − 1 2 γ − 1 ρ 1 dλ α 1 − λ = H ( T − T i ) . dX U ZND reaction zone structure ODE supplemented with extended Rankine-Hugoniot algebraic conditions.

  10. Model Reductions: Inversion of Algebraic Relations with M 1 ≡ M 1 sin β , ρ 1 ( γ + 1) M 2 1 ρ ( λ ) = ” , r` 1 + γ M 2 ´ 2 − ( γ + 1) M 2 “ 2 + γ − 1 2 λq 1 + γ M 2 RT 1 + ( γ − 1) M 2 1 ± 1 1 1 γ ρ 1 u 1 sin β U ( λ ) = , ρ ( λ ) „ 1 1 « 1 sin 2 β p 1 + ρ 2 1 u 2 p ( λ ) = − , ρ ( λ ) ρ 1 „ 1 1 sin 2 β ρ ( λ ) R + ρ 2 1 u 2 1 « p 1 T ( λ ) = − , ρ ( λ ) R ρ ( λ ) ρ 1 γRT 1 ( M 2 1 − 1) 2 CJ limitation . q ≤ , 2( γ 2 − 1) M 2 1 + shocked; − unshocked. Take the shocked branch.

  11. Reaction Zone Structure Solution dλ α dX = ρ 1 u 1 sin β ρ ( λ )(1 − λ ) , λ (0) = 0 , p 1 − a 4 0 0 a 3 1 1 r 0 „ « „ « 1 1 − a 4 λ r 1 1 − 1 + ! a 2 1 1 − a 4 1 − a 4 B B C C “p ” B C B B C C X ( λ ) = a 1 2 a 3 1 − a 4 λ − 1 + ln , B C B B C C B „ r « „ « C 1 − a 4 λ r B B 1 − λ C C 1 @ A 1 + 1 − @ @ A A 1 − a 4 1 − a 4 √ γRT 1 1 a 1 = , ( γ + 1) M 1 α 1 + γ M 2 a 2 = 1 , M 2 a 3 = 1 − 1 , γ 2 − 1 M 2 q 1 a 4 = 2 . 1 − 1) 2 γ RT 1 ( M 2

  12. Parametric Values Independent Parameter Units Value R J/kg/K 287 α 1 /s 1000 β rad π/ 4 γ 6 / 5 - T 1 K 300 M 1 3 - kg/m 3 ρ 1 1 q J/kg 300000 T i K 131300 / 363

  13. Reaction Zone Structure Normal to Shock 3 λ ρ (kg/ m ) 1 4 0.8 a) 3 b) 0.6 2 0.4 1 0.2 X (m) 4 X (m) 0.0 0 -1 0 1 2 3 4 -1 0 1 2 3 T(K) MX 600 3 500 c) 2 d) 400 1 300 X (m) X (m) 200 0 2 -1 0 1 2 3 4 -1 0 1 3 4

  14. Exact Solution: Streamlines y (m) straight oblique shock, β = π / 4 4 • Curved streamlines identical to wedge 3 contour. 2 λ ~ 0.9 • Streamline curvature 1 approaches zero as curved wedge 0 x (m) reaction completes. 0 1 2 4 3

  15. High Mach Number Limit Solution „ 1 „ „ « «« ρ ( λ ) γ + 1 1 γ + 1 2 γ γ 2 − 1 + λq = 1 − + O , M 2 M 4 ρ 1 γ − 1 γ RT 1 1 1 „ 1 „ „ « «« U ( λ ) γ − 1 1 γ + 1 2 γ γ 2 − 1 + λq = 1 + + O , M 2 M 4 u 1 sin β γ + 1 γ RT 1 1 1 „ 1 γ 2 − 1 „ „ « «« p ( λ ) 2 γ 1 γ + 1 + λq 1 M 2 = 1 − + O . 1 γ + 1 M 2 2 γ M 4 p 1 RT 1 1 1 „ « ( γ + 1) α λ ( X ) = 1 − exp − ( γ − 1) u 1 sin β X , X r ∼ γ − 1 u 1 sin β Reaction zone thickness . γ + 1 α

  16. Low Heat Release Limit Effects of heat release are better represented following a detailed asymptotic analysis, which yields a 5 ln(1 − λ ) − a 3 a 4 “ ” X ( λ ) = a 1 λ . 2 Invert to form „ X » a 3 a 4 «– λ ( X ) = 1 − 2 a 5 a 1 a 5 + a 3 a 4 2 a 5 exp a 3 a 4 W 0 . 2 a 5 „ « X r ∼ γ − 1 u 1 sin β 2 γ + 1 q 1 + + . γ + 1 ( γ − 1) M 2 γ ( M 2 1 − 1) α RT 1 1 Lambert W 0 function utilized: W 0 ( we w ) = w.

  17. Exact versus Asymptotic Solutions • High Mach number λ 1.0 limit solution agrees exact solution 0.8 low heat release limit high Mach number limit poorly. 0.6 0.4 • Low heat release limit 0.2 X (m) 0.0 0 1 2 3 4 solution agrees well.

  18. Verification of Modern Shock Capturing Algorithm • Algorithm of Xu, Aslam, and Stewart, 1997, CTM . • Uniform Cartesian grid. • Embedded internal boundary with level set represen- tation. • Nominally fifth order weighted essentially non-oscillatory (WENO) discretization. • Non-decomposition based Lax-Friedrichs solver. • Third order Runge-Kutta time integration.

  19. Exact versus Numerical Solutions y (m) 2.0 • 256 × 256 uniform ρ = 2.9 kg/m 3 exact ρ = 2.6 kg/m 3 1.5 numerical ρ = 2.3 kg/m 3 numerical grid. 1.0 ρ = 2.0 kg/m 3 • good agreement in pic- 0.5 ture norm. 0.0 x (m) 0.0 0.5 1.0 1.5 • numerical solution sta- ble.

  20. Iterative Convergence to Steady State: Various Grids • Coarse grids relax L (kg/m) 1 quickly; fine grids relax 10 64 x 64 slowly. 128 x 128 256 x 256 1 512 x 512 1024 x 1024 • All grids iteratively 0.1 converge to steady 0.01 state. t (s) 0 0.002 0.004 0.006 0.008 0.01 • Iterative convergence is distinct from grid convergence.

  21. Grid Convergence L (kg/m) 1 • Convergence 1 rate: ∆ x 0 . 779 � � O . 0.1 • Both shock capturing and embedded bound- 0.01 ∆ x (m) 0.001 0.01 0.1 ary induce the low con- vergence rate.

  22. Conclusions • New exact solution for two-dimensional steady detona- tion found. • Excellent verification tool for computational methods. • Numerical solutions are stable. • Shock capturing and embedded boundary induce low order convergence rates even for high order discretiza- tions. • Common practice of claiming high order convergence rates without verification should be stopped.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend