critical behavior of the two dimensional dodecahedron
play

Critical behavior of the two-dimensional dodecahedron model - PowerPoint PPT Presentation

2019/07/29 CAQMP2019 @ ISSP , Kashiwa Critical behavior of the two-dimensional dodecahedron model Icosahedron model: HU, Okunishi, Krcmar, Gendiar, Yunoki and Nishino, Phys. Rev. E 96 , 062112 (2017). Dodecahedron model: HU, Okunishi, Yunoki


  1. 2019/07/29 CAQMP2019 @ ISSP , Kashiwa Critical behavior of the two-dimensional dodecahedron model Icosahedron model: HU, Okunishi, Krcmar, Gendiar, Yunoki and Nishino, Phys. Rev. E 96 , 062112 (2017). Dodecahedron model: HU, Okunishi, Yunoki and Nishino, in preparation. HIROSHI UEDA (RIKEN R-CCS)

  2. Collaborators  K. Okunishi (Niigata Univ.)  R. Krcmar (Slovak Academy of Sciences)  A. Gendiar (Slovak Academy of Sciences)  S. Yunoki (RIKEN)  T . Nishino (Kobe Univ.)

  3. Background  Mermin–Wagner theorem: [Mermin and Wagner, PRL, 1966] spontaneous breaking of a continuous symmetry does not occur in 2D  Discretization  Spontaneous symmetry breaking ex) 𝑟 -state clock  XY [ O(2) ] 2 1 𝑟 � 2 : Ising 𝑟 � 3 : Three-state Potts 0 𝑟 � 4 : Ising � 2 𝑟 � 1 𝑟 � 5 : BKT

  4. Regular polyhedron model Tetrahedron

  5. Regular polyhedron model Octahedron

  6. Regular polyhedron model Cube

  7. Regular polyhedron model Icosahedron

  8. Regular polyhedron model Dodecahedron

  9. Discretization and variety of phase transition # of Vertexes : 4 6 8 12 20 Ising � 3 Class of P .T.: 4-state Potts 2nd Order 2nd Order massless? [Wu,1982] [Surungan&Okabe, 2012] [Patrascioiu, [Patrascioiu, et al ., 2001] et al ., 1991] MC MC MC ↓ [Surungan& ↓ Weak 1st Okabe, 2012] MC 2nd Order [Roman, et al ., 2016] CTMRG [Surungan&Okabe, 2012] MC

  10. Motivation and conclusion N or m T C     𝑑 ��.� 3.0 ��.� [Patrascioiu, 320&FSS ��.� 0.555 1 1.7 ��.� � � � et al ., 2001] [Surungan& 256&FSS 0.555 1 1.30 1 � 0.199 1 � � Okabe, 2012] 500&FmS 0.5550 1 Our work 1.62 2 � � 0.12 1 1.90 2 12 PRE (2017) N or m T C     𝑑 [Patrascioiu, 200&FSS 0.36,0.47 � � � � � et al., 1991] [Surungan& 64&FSS 0.438 1 2.0�1� � 0.149�1� � � Okabe, 2012] 800&FmS Our work 20 0.433 2 2.5 3 � � � 2.3�2� Unpublished numerical results (2019) We use an empirical relation c𝜆/6 � 12/𝑑 � 1 with c𝜆/6 � 0.304�7� . [Pollmann, 2009]

  11. Regular Icosahedron  Icosahedral symmetry - Centers of edges (two-fold) - Centers of faces (three-fold) - Two opposite vertexes (five-fold)  Q. Which symmetry is broken in ordered phases?

  12. Icosahedron Model  Vertex representation

  13. Icosahedron Model  Vertex representation

  14. Method: CTMRG  Corner transfer matrix renormalization group [Nishino, Okunishi, JPSJ, 1996] - CTM: partition function of the quadrant (edge spins are specified ) 2 3 𝑀 4  Partition function

  15. Classical analogue of Entanglement Entropy • Quantum 1D Hamiltonian • Classical 2D Transfer matrix �𝝉� �𝝉� 𝑰 �𝝉′� �𝝉′� • Eigenvector • Ground state 𝑰 � 𝛀 � 𝐹 � 𝛀 Corner transfer matrix : 𝑀 � ∞ , 𝑀 � 4

  16. Classical analogue of Entanglement Entropy • Reduced density matrix︓ 𝜍 � Ω Ω 𝑾 ∗ 𝑾 𝛀 ∗ �𝝉 � � � � 𝑽 ∗ �𝝉 � � 𝑽 �𝝉 � � 𝛀 � � �𝝉 � 𝑽 ∗ 𝑽 Λ 𝑽 ∗ 𝑾 � 𝑾 ∗ 𝑾 𝑾 ∗ 𝑽 Λ Ω Ω 𝑽 ∗ 𝑽 ∗ � � Λ � Ω � 𝑽 𝑽

  17. Classical analogue of Entanglement Entropy CTM: 𝑴 � ∞ • Entanglement Entropy � � 4 log Ω � 𝑇 � � � ∑ Ω � 𝑀 ≫ 𝜊�𝑛, 𝑈� � � � 2 log 𝜇 � 𝑇 � � � ∑ 𝜇 � � • CTM of CTMRG 【Nishino,Okunishi(1996)】 ︓ 𝑀 � 𝑀 Same � 𝑀 ≫ 𝜊�𝑛, 𝑈� 𝑛 : # of renormalized states ※ finite 𝑛 ⇒ finite 𝜊 𝑛, 𝑈 2 3 𝑀 4

  18. Magnetization Rotational symmetry along Icosahedral the axis passing through symmetry vertexes 1 and 12. 𝑞�𝑡� m=500

  19. Finite- scaling near criticality HU et al., PRE (2017)  Finite size scaling [ Fisher and Barber, 1972, 1983 ] Nishino, Okunishi and Kikuchi, PLA, 1996 Tagliacozzo, Oliveira, Iblisdir, and Latorre, PRB, 2008 + Finite- 𝑛 scaling at criticality Pollmann, Mukerjee, Turner, and Moore, PRL, 2009 Pirvu, Vidal, Verstraete, and Tagliacozzo, PRB, 2012  Scaling assumption 1 𝑐 : Intrinsic length scale of the system

  20. Finite- scaling near criticality HU et al., PRE (2017)  Definition of Correlation length 𝜂 � and 𝜂 � : 1st and 2nd eigenvalues of the transfer matrix  Scaling assumption 2  𝑐 ∼ 𝜊�𝑛, 𝑢� & Scaling assumption 1

  21. Finite- scaling for  Bayesian scaling [Harada, PRE, 2011]  Three parameters 𝑈 � � 0 . 5550 𝜉 � 1 . 617 𝜆 � 0 . 898

  22. Finite- scaling for  One parameter 𝛾 � 0.129 Shoulder-like structure 𝑈 � � 0 . 5550 disappears at 𝑛 → ∞ 𝜉 � 1 . 617 𝜆 � 0 . 898 Single order-disorder phase transition occurs.

  23. Von Neumann entropy  Definition: Analogue of the entanglement entropy near criticality [ ℓ ≫ 𝜊�𝑛, 𝑢� ] Vidal, Latorre, Rico, and Kitaev, PRL, 2003 Calabrese and Cardy, J. Stat. Mech., 2004  Finite- 𝑛 scaling function 𝑏 : non-universal constant 𝑑 : central charge

  24. Finite- scaling for  One parameter 𝑑 � 1.894  Empirical relation [ Pollmann, Mukerjee, Turner, and Moore, PRL, 2009 ] 𝑈 � � 0 . 5550 � 𝜆 � 𝜉 � 1 . 617 � ��/��� 𝜆 � 0 . 898 This work: � ��/��� � 𝜆 � 0.003 �

  25. Summary for Icosahedron model  Single continuous phase transition  Ordered phase: five-fold rotational symmetry  Estimated central charge︓beyond the minimal model of CFT 6 � 𝜆 𝑈 𝐃 𝜉 𝜆 𝛾 𝑑 𝑑 12/𝑑 � 1 0.5550(1) 1.62(2) 0.89(2) 0.12(1) 1.90(2) ~0.009 Phys. Rev. E 96 , 062112 (2017)

  26. Dodecahedral model 𝑈 � � 0.441 Unpublished numerical results 𝜉 � 3.12 𝜆 � 0.860  Single continuous phase transition  Large-m calculations are required  Necessity of Parallelized CTMRG

  27. Pseudo code of Symmetric CTMRG ����� � 0) Set 𝐗 � 𝑥 �,� ����� � , 𝑥 ��� ��� ,� � ���� � ��� � 𝓍 ��� � � � EigenExa • 1×1 2D Block-Cyclic ����� , 𝑞 �,� � �� ��� � 𝓆 �� � � Distribution Set 𝐐 � 𝑞 �,� ������ BLACS • Reshape by MPI_ALLTOALLV • where 𝓆 �� � � � 𝓆 � � �� Set 𝛁 � 𝜀 �,� � 𝜕 � , 𝜕 � � 0 [ 𝑛 ≫ 𝑒 ] FUNC_CTMRG[ 𝐐, 𝐐 � , 𝐗 ] 1) 𝐐 � � 𝑞 �,� � ≔ 𝜕 � 𝑞 �,� 1) 𝛀 ≔ 𝐐 � 𝐐 � 2) 𝛀 � 𝜔 �,� � ≔ FUNC_CTMRG[ 𝐐, 𝐐 � , 𝐗 ] ����� � 2) 𝛀 � � 𝜔 �,� � , ����� � 3) Diagonalization: 𝛀 � 𝐕𝛁𝐕 �  Update 𝐕 � 𝑣 �,� � and 𝛁 � 𝜔 ��� � � �� ,��� � � �� ≔ 𝜔 ��� ��� ,� � �� � � �� 4) 𝐕 � � 𝑣 �,� � � , 𝑣 �,� � �� ��� 3) 𝚾 ≔ 𝛀 � 𝐗 ≔ 𝑣 ��� ��� ,� � 5) 𝛀 ≔ FUNC_CTMRG( 𝐐, 𝐕 � , 𝐗� 4) 𝜔 ��� ��� ,� � �� � � �� ≔ 𝜚 ��� � � �� ,��� � � �� 6) 𝐐 ≔ 𝐕 � 𝛀 �,� 5) return 𝛀 7) go to 1)

  28. EigenExa *http://www.r-ccs.riken.jp/labs/lpnctrt/assets/img/EPASA2014_dense_poster_ImamuraT_only.pdf

  29. Benchmarks of parallel CTMRG System: Icosahedron model ( 𝑂 � 12𝑛 ) [sec.] 10,000 itr. For 𝑂 � 10000 24 hours For 𝑂 � 16000 # of nodes required for the dodecahedron model with 𝑛 � 500~800 : 𝑜 � 7 � ~24 �

  30. Finite- scaling for Unpublished numerical results 𝑛 ∗ � 𝑛 � � 𝑛 � /2 Extrapolation : liner fitting as a function of 1/𝑛 ∗

  31. Summary of Dodecahedron model  Single continuous phase transition  Estimated central charge︓ beyond the minimal model 𝑈 𝐃 𝜆/𝜉 𝑑𝜆/6 𝜉 𝑑 0.433 2 0.322�9� 0.304 7 2.5 3 2.3�2� Unpublished numerical results Using the relation  Future issue: Calculation of 𝜊 and 𝑁 c𝜆/6 � 12/𝑑 � 1 Employment of a solver for partial eigenvalue problems

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend