recent developments in the anaelu mpod software system
play

RECENT DEVELOPMENTS IN THE ANAELU-MPOD SOFTWARE SYSTEM FOR - PowerPoint PPT Presentation

RECENT DEVELOPMENTS IN THE ANAELU-MPOD SOFTWARE SYSTEM FOR POLYCRYSTAL CHARACTERIZATION L. E. Fuentes-Cobas 1 , E. E. Villalobos-Portillo 1 , D. C. Burciaga-Valencia 1 , L. Fuentes-Montero 2 , M. E. Montero-Cabrera 1 , D. Chateigner 3 1 Centro de


  1. RECENT DEVELOPMENTS IN THE ANAELU-MPOD SOFTWARE SYSTEM FOR POLYCRYSTAL CHARACTERIZATION L. E. Fuentes-Cobas 1 , E. E. Villalobos-Portillo 1 , D. C. Burciaga-Valencia 1 , L. Fuentes-Montero 2 , M. E. Montero-Cabrera 1 , D. Chateigner 3 1 Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua, Mexico 2 Diamond Light Source, Didcot, UK. 3 Université de Caen Normandie, Caen, France http://cimav.edu.mx/investigacion/software/ http://mpod.cimav.edu.mx

  2. Outline 1) Recap on Texture Analysis. The program ANAELU (Analytical Emulator Laue Utility) 2) Structure-Properties: MPOD (Material Properties Open Database) a) Single Crystals. b) Textured Polycrystals ANAELU

  3. Crystallographic Texture: Preferred Orientation a b a) Random distribution of orientations b) Texture AURIVILLIUS POLYCRYSTALS Rolling Texture (COURTESY J. A. EIRAS, UFSC, BRASIL)

  4. The “classical” description of textures: (Direct) Pole Figures https://www.researchgate.net/figure/Figure-Initial-pole-figures-for-single-crystal-FCC-cube- texture-simulations_fig6_319446954

  5. Direct pole figures follow the sample symmetry Pole figures in axial symmetry (fiber) textures D. Chateigner, J. Ricote. Ch 8 of Handbook “Multifunctional polycrystalline ferroelectric materials”. Eds: L. Pardo y J. Ricote, Springer-Verlag (2011)

  6. Inverse Pole Figure (IPF) 001

  7. Inverse pole figures follow the crystal symmetry Hexagonal Cúbico Trigonal Tetragonal

  8. Model IPFs for poled BaTiO 3 0,0,1 1,1,1 SAMZ-Poly program “Structural” IPF 4mm point group Diffraction (Laue) IPF 4/m 2/m 2/m

  9. Euler space http://aluminium.matter.org.uk/content/html/eng/default.asp?catid=100&pageid=1039432491

  10. The Orientation Distribution Function (ODF) dV/V = f(g) dg f ( g ) = f ( G s •g •G c ) Frequent ODFs in cubic phases Bunge (1982) Texture Analysis in Materials Science: Mathematical Methods

  11. Texture Measurement DRX - Bragg-Brentano I = [ I 0 K |F| 2 p (LP) A T / v 2 ] ⋅ R( φ , β ) 3 / 2 − 1 ⎛ ⎞ ⎛ ⎞ 2 2 2 R G cos sin ⎜ ⎟ ⎜ ⎟ = φ + φ ⎜ ⎟ h 1 h h ⎜ ⎟ G ⎝ ⎠ ⎝ ⎠ 1 0,0,1 2 R G ( 1 G ) exp ( G ) = + − φ h 2 2 1 h 1,0,0 0,0,1 1,0,0 1,0,0 0,0,1 Textured BaTiO 3 ceramic

  12. Texture Measurement Texture goniometer (ideally with neutrons) M. Betzl, L. Fuentes, J. Tobisch: "Texture study of rolling conditions for zinc ‑ based alloys". JINR comm. E14 ‑ 85 ‑ 473, Dubna 1985.

  13. Polycrystal aggregate function g = [ ϕ 1 , Φ , ϕ 2 ] = g ( r ) Focus on “stereography”

  14. Texture Measurement g ( r ) investigated by means of Kikuchi lines at the SEM (BSED, OIM)

  15. Texture Measurement Nano-systems texture analysis by 2D - XRD 2-D position sensitive detector, BL11-3 SSRL

  16. “Fibre textures” (axial symmetry): A frequent case in nano-structured functional materials If a sample shows fibr ibre text xtur ure , then the inverse pole figure (IPF) of the symmetry axis plays Nano-islands ↑ the ODF role. Nano-rods ↑ Nano-plates à ß Direct Pole Figure

  17. ANA LYTICAL E MULATOR L AUE U TILITY J. Appl. Cryst . Vol. 44, pp. 241-246 (2011) http://cimav.edu.mx/investigacion/software/ http://www.esrf.eu/computing/scientific/ANAELU/Anelu_Page.htm https://www.iucr.org/resources/other-directories/software/anaelu

  18. Combined 2D grazing incidence XRD + Electron microscopy texture analysis of ZnO thin layers Observed Calculated Preferred growth direction: [001] Distribution width Ω = (20 ± 2)° A. Sáenz-Trevizo, M. Miki-Yoshida et al Materials Characterization 98 (2014) 215–221

  19. - Friendly GUI - Background modeling - Quantitative semi- automatic refinement of parameters

  20. Physical properties: Y = K · X “Principal” and “Coupling” Interactions. Some effects and their constitutive equations: Paraelectricity: P = ε 0 χ P · E Paramagnetism: µ 0 M = µ 0 χ M · H Elasticity: S = s · T Thermal expansion S = η ·Δ θ Piezoelectricity: P = d · T S = d · E Magnetoelectricity: P = α · H µ 0 M = α · E L. Fuentes: Magnetic Coupling Properties in Polycrystals Textures and Microstructures 30 : 167-189 (1998).

  21. THERMO-ELASTO-ELECTRO-MAGNETIC EQUILIBRIUM PROPERTIES Property Related magnitudes Tensor Heat capacity C Entropy (P0) / Temperature (P0) P0 Elasticity s Strain (P2) / Stress (P2) P4 Electr. susceptibility χ P Polarization (P1) / Elec. Intensity (P1) P2 Magn. susceptibility χ M Magnetization (A1) / Magn. Intensity (A1) P2 Strain (P2) / Temperature (P0) P2 Thermal expansion η Pyroelectricity p Polarization (P1) / Temperature (P0) P1 Pyromagnetism i Magnetization (A1) / Temperature (P0) A1 Piezoelectricity d Polarization (P1) / Stress (P2) P3 Piezomagnetism b Magnetization (A1) / Stress (P2) A3 Magnetization (A1) / Elec. Intensity (P1) A2 Magnetoelectricity α P à POLAR; A à AXIAL; r = Tensor rank Tensor ranks: m, n, m+n

  22. MATRIX NOTATION A ij (for example): strain or sress tensor MATRIZ 3X3 HIPERVECTOR PIEZOELECTRICITY T ⎡ ⎤ 1 ⎢ ⎥ T d d d d d d ⎡ ⎤ 2 ⎢ ⎥ P 11 12 13 14 15 16 ⎡ ⎤ 1 T ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 3 ó P d d d d d d • = ⎢ ⎥ ⎢ ⎥ 21 22 23 24 25 26 2 ⎢ ⎥ T ⎢ ⎥ ⎢ ⎥ 4 P ⎢ ⎥ ⎣ ⎦ d d d d d d 3 ⎢ ⎥ T ⎢ ⎥ ⎣ ⎦ 31 32 33 34 35 36 5 d · T = P ⎢ ⎥ T ⎢ ⎥ ⎣ ⎦ 6

  23. ELASTO-PIEZO-DIELECTRIC MATRIX S = s ⋅ T + d ⋅ E D ( ≈ P) = d ⋅ T + ε⋅ E S s s s s s s d d d T ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 1 11 12 13 14 15 16 11 12 13 1 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ S s s s s s s d d d T ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 2 21 22 23 24 25 26 21 22 23 2 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ S s s s s s s d d d T 31 32 33 34 35 36 31 32 33 3 ⎢ ⎥ 3 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ S s s s s s s d d d T 41 42 43 44 45 46 41 42 43 4 4 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ s s s s s s d d d S = T 51 62 53 54 55 56 51 52 53 5 5 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ s s s s s s d d d ⎢ ⎥ S T 6 61 62 63 64 65 66 61 62 63 6 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ d d d d d d D E ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ε ε ε 1 11 12 13 14 15 16 11 12 13 1 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ D d d d d d d E ε ε ε ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 2 21 22 23 24 25 26 21 22 23 2 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ D d d d d d d E ε ε ε ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 3 31 32 33 34 35 36 31 32 33 3

  24. CRYSTALLOGRAPHIC ELASTO-PIEZO- DIELECTRIC MATRICES, IEEE

  25. CRYSTALLOGRAPHIC ELASTO-PIEZO- DIELECTRIC MATRICES, IEEE

  26. MAGNETOELECTRIC MATRICES

  27. THE NEUMANN PRINCIPLE Ø Effect’s symmetry is always -at least- equal to cause’s symmetry Cause Effect Electromagnetism Charges E and B fields and currents Crystal Physics Structure Properties

  28. Scalars, polar and axial vectors Scalars (Q) are invariant under symmetry operations E E r dq ˆ Q d E = p 2 4 r m πε m* 0 Polar vectors ( E) transform as position vectors Axial (or “pseudo-”) vectors ( B ) B µ transform almost like polar x • vectors. Except … they ignore m the inversion transformation i d l r ˆ µ × 0 d B = 2 4 r π L.Fuentes, R. Font (1993) Rev. Esp. Fís. 7 (2), 49

  29. The irreps approach: Piezoelectricity in C 2v T ⎡ ⎤ 1 ⎢ ⎥ T d d d d d d ⎡ ⎤ 2 ⎢ ⎥ P 11 12 13 14 15 16 ⎡ ⎤ 1 T ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 3 P d d d d d d = • ⎢ ⎥ ⎢ ⎥ 21 22 23 24 25 26 2 ⎢ ⎥ T ⎢ ⎥ ⎢ ⎥ 4 P ⎢ ⎥ ⎣ ⎦ d d d d d d 3 ⎢ ⎥ ⎢ T ⎥ ⎣ ⎦ 31 32 33 34 35 36 5 ⎢ ⎥ T ⎢ ⎥ ⎣ ⎦ 6 L. Fuentes, Ma. E. Fuentes: “La Relación Estructura-Simetría-Propiedades en Cristales y Policristales”. Reverté, México D.F. (2008)

  30. A selection of material properties databases and representation tools: - The classical: Landolt-Börnstein (http://materials.springer.com/) - The materials project. UC Berkeley (https://www.materialsproject.org/) - WinTensor. Univ. Washington ( http://cad4.cpac.washington.edu/ wintensorhome/wintensor.htm) - MPOD. UniCaen, CIMAV et al ( http://mpod.cimav.edu.mx)

  31. THE REPRESENTATION OF COUPLING INTERACTIONS IN THE MATERIAL PROPERTIES OPEN DATABASE (MPOD) http://mpod.cimav.edu.mx

  32. BaTiO 3 4mm Piezoelectric constant d Dielectric constant Elastic compliance s Young modulus

  33. BaTiO 3 4mm Piezoelectric charge Dielectric constant constant d à ∞ mm ∞ ⁄ mmm Elastic compliance s Young modulus 4 ⁄ mmm 4 ⁄ mmm

  34. Magnetoelectricity in LiCoPO 4 . Olivine structure, magnetic space group: Pnma’ Magnetic point group: mmm’= D 2h :C 2v Single-crystal ME tensor (T = 10 K) ∝= [█ 0 & 15 & 0 @ 30 & 0 & 0 @ 0 & 0 & 0 ] y x Data from Vaknin et al. (2002). x = 0 and y = 0 à symmetry planes; z = 0 à anti-symmetry plane

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend