real time dynamics in quantum impurity systems a time
play

Real-time dynamics in Quantum Impurity Systems: A Time-dependent - PowerPoint PPT Presentation

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Frithjof B Anders Institut fr theoretische Physik, Universitt Bremen Concepts in Electron Correlation, Hvar, 30. September 2005


  1. Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Frithjof B Anders Institut für theoretische Physik, Universität Bremen Concepts in Electron Correlation, Hvar, 30. September 2005 Collaborator: A. Schiller, Hebrew University, Jerusalem, Israel R. Bulla, S. Tornow, University of Augsburg, Germany M. Vojta, University of Karlsruhe, Germany Frithjof Anders, Institut f¨ ur theoretische Physik · Universit¨ at Bremen Concepts in Electron Correlation, Hvar, 30/9/2005 – p.1/18

  2. What is a Quantum-Impurity System (QIS)? Quantum Impurity |α> |γ> (metallic) host bosonic bath quantum-impurity: embedded in a (metallic) host interacting with the environment of non-interacting particles (Bosons/Fermions) Problem: infrared divergence due to local degeneracy Frithjof Anders, Institut f¨ ur theoretische Physik · Universit¨ at Bremen Concepts in Electron Correlation, Hvar, 30/9/2005 – p.2/18

  3. What is a Quantum-Impurity System (QIS)? Quantum Impurity |α> |γ> (metallic) host bosonic bath Examples: transition metal ion Cu, Mn, Ce in a metal two-level system (Qubit) in a bosonic bath Quantum dot coupled to leads donor-acceptor centers of a large bio-molecule · · · Frithjof Anders, Institut f¨ ur theoretische Physik · Universit¨ at Bremen Concepts in Electron Correlation, Hvar, 30/9/2005 – p.2/18

  4. Goal of the Talk Our new Approach to Non-Equilibrium of QIS: based on the non-perturbative NRG uses the complete basis of the many body Fock space takes into account all energy scales describes short and long time scales does not accummulate an error ∝ t as the TD-DMRG ☞ breakthrough in the description of real time dynamics of non-equilibrium quantum systems: Frithjof Anders, Institut f¨ ur theoretische Physik · Universit¨ at Bremen Concepts in Electron Correlation, Hvar, 30/9/2005 – p.3/18

  5. Contents 1. Introduction Modelling of quantum dots Charge transfer in molecules (spin-boson model) 2. Non-equilibrium dynamics Time evolution of quantum systems New approach to quantum impurity problems 3. Results Dissipation and decoherence in a two level system Spin- and charge dynamics in ulta-small quantum dots AF-Kondo model spin precession 4. Summary and outlook Frithjof Anders, Institut f¨ ur theoretische Physik · Universit¨ at Bremen Concepts in Electron Correlation, Hvar, 30/9/2005 – p.4/18

  6. Modelling of a Quantum Dot � ǫ kσ c † H = kσ c kσ kσ � σ d σ + Un d ↑ n d [ E d ( t ) − σH ( t )] d † + ↓ σ � � � c † kσ d σ + d † + V ( t ) σ c kσ kσ Single Impurity Anderson Model (SIAM) charge fluctuation scale: Γ i = V 2 i πρ F infrared problem ☞ low temperature scale: T K ∝ exp( − πU/ 8Γ) Frithjof Anders, Institut f¨ ur theoretische Physik · Universit¨ at Bremen Concepts in Electron Correlation, Hvar, 30/9/2005 – p.5/18

  7. Spin-Boson Model qubit plus environment (Unruh) electron transfer in (bio)-molecules (Marcus, Schulten) | ↑� = | A � , | ↓� = | D � ǫσ z − ∆ � � � ω q b † b † � � H = 2 σ x + q b q + σ z M q q + b q q q � | M q | 2 δ ( ω − ω q ) ∝ 2 παω 1 − s ω s J ( ω ) = c q Leggett et. al. (RMP 1987), Xu and Schulten 1994, Bulla et. al. (2003) · · · Questions: influence of the bosonic spectrum J ( ω ) on the real time dynamics critical slowdown of the charge transfer process for large coupling Frithjof Anders, Institut f¨ ur theoretische Physik · Universit¨ at Bremen Concepts in Electron Correlation, Hvar, 30/9/2005 – p.6/18

  8. Where do we stand in the description of non-equilibrium, dissipation and decoherence in quantum systems? Frithjof Anders, Institut f¨ ur theoretische Physik · Universit¨ at Bremen Concepts in Electron Correlation, Hvar, 30/9/2005 – p.7/18

  9. Non-Equilibrium Dynamics of Quantum Systems quantum dynamics single quantum state: Schrödinger equation i � ∂ t | ψ > = H ( t ) | ψ > ensemble: density operator ρ ( t ) = e − iHt/ � ρ 0 e iHt/ � i � ∂ t ˆ ρ ( t ) = [ H, ˆ ρ ] ; finite size quantum system: only unitary dynamics, no dissipation dissipation and decoherence: infinitly large environment needed Subsystem Size of Subsystem − → 0 Environment Size of environment Frithjof Anders, Institut f¨ ur theoretische Physik · Universit¨ at Bremen Concepts in Electron Correlation, Hvar, 30/9/2005 – p.8/18

  10. NRG Approach to Quantum Impurity Problems H = H imp + H bath + H imp − bath 1. discretizing the bath Hamiltonian on a logarithmic energy mesh (Wilson 1975,Oliveira ) 0 −z −(z+1) −(z+1) −z 0 −Λ −Λ −Λ Λ Λ Λ 0 2. mapping onto a semi-infinite chain impurity t 1 t m−1 t m+1 t N−1 t 0 H m R m,N 3. diagonalizing the Hamiltonian H N +1 using the recursion √ � � � f † N +1 α f Nα + f † H N +1 = Λ H N + ξ Nα Nα f N +1 α α 4. truncate the basis set, go back to step 3 Frithjof Anders, Institut f¨ ur theoretische Physik · Universit¨ at Bremen Concepts in Electron Correlation, Hvar, 30/9/2005 – p.9/18

  11. Novel Many-Body Approach to NEQ of QIS impurity Subsystem t 1 t m−1 t m+1 t N−1 t 0 H m R m,N Environment use the NRG to generate a complete basis | l, e ; m � H m | l � = E m l | l � , l eliminated state e ∈ R m,N � � 1 = | l, e ; m �� l, e ; m | m l,e Puls at t = 0 : H ( t ) = H i Θ( − t ) + H f Θ( t ) operator ˆ O : property of the subsystem S Frithjof Anders, Institut f¨ ur theoretische Physik · Universit¨ at Bremen Concepts in Electron Correlation, Hvar, 30/9/2005 – p.10/18

  12. Novel Many-Body Approach to NEQ of QIS time-dependent NRG (TD-NRG) (FBA, A. Schiller, cond -mat/0505553, PRL 2005) Subsystem calculate ρ red NEQ ( t ) Environment � � � ˆ ρ ( t ) ˆ � α | ˆ � O | α ′ � ρ red O � ( t ) = Tr O = αα ′ ,m ( t ) m,αα ′ e − i ( E α − E α ′ ) t � ρ red � α, e ; m | ρ eq | α ′ , e ; m � αα ′ ,m ( t ) = e Feynman 1972, White 1992, Hofstetter 2000, · · · mimic bath contiuum: use Oliveira’s z -trick evolves towards the new steady state: [ H ( t > 0) , ρ ( ∞ )] = 0 Trace over the environment: dissipation and decoherence! Frithjof Anders, Institut f¨ ur theoretische Physik · Universit¨ at Bremen Concepts in Electron Correlation, Hvar, 30/9/2005 – p.10/18

  13. Spin-Boson Model H = ǫσ z − ∆ � � � ω q b † b † � � 2 σ x + q b q + σ z M q q + b q q q S x = 1 2 ( | ↑��↓ | + | ↓��↑ | ) Decoherence QuBit state 1/2 , α damp =0.1, α=0.1, ε=0, ∆ 0 =0.,ω c =1 N s =150, N z =16, N b =8, N iter =14, T=0.0078125, Λ=2 1 √ ( | ↑� + | ↓� ) s=1.5 2 0.5 s=1.5 (ana.) s=1.0 s=0.8 0.4 s=0.6 exact solution s=0.4 S x (t) s=0.2 0.3 0.2 P ( t ) = e − Γ( t ) 0.1 0 0.001 0.01 0.1 1 10 Leggett et al. , t*T Unruh, Mon Sep 19 11:46:59 2005 Palma et al. , Bulla et al. Frithjof Anders, Institut f¨ ur theoretische Physik · Universit¨ at Bremen Concepts in Electron Correlation, Hvar, 30/9/2005 – p.11/18

  14. Spin-Boson Model H = ǫσ z − ∆ � � � ω q b † b † � � 2 σ x + q b q + σ z M q q + b q q q J ( ω ) = 2 παω 1 − s ω s 0 < ω < ω c ; Ohmic case: s = 1 for c Fixed point: delocalized localized Toulouse Point: 1/2<α<α(∆) 0<α<1/2 c α(∆) < α c oszillatory overdamped α=1/2 Frithjof Anders, Institut f¨ ur theoretische Physik · Universit¨ at Bremen Concepts in Electron Correlation, Hvar, 30/9/2005 – p.11/18

  15. Spin-Boson Model H = ǫσ z − ∆ � � � ω q b † b † � � 2 σ x + q b q + σ z M q q + b q q q 1 =0.2, ε 1 =0, α=0.1, ω c =1, s=1, T=3*10 -8 N s =100, N b =8, N iter =25, N z =16, Λ=2, ∆ 0.5 2 παω 1 − s ω s J ( ω ) = c α=0.1 α=0.1 0.4 α=0.3 α=0.3 α=0.5 α=0.5 0.3 α=0.7 α=0.7 Ohmic Regime: s = 1 α=1.0 α=1.0 0.2 α=1.1 α=1.1 α=1.2 α=1.2 QPT at α c (∆) α=1.3 α=1.3 0.1 α=1.4 α=1.4 S z (t) Toulouse point 0 α = 1 / 2 -0.1 0.4 oszillatory α < 1 / 2 -0.2 0.2 S z (t) overdamped 0 -0.3 α c > α > 1 / 2 -0.2 -0.4 3 4 5 6 7 8 9 10 10 10 10 10 10 10 localize: α > α c -0.5 -1 0 1 2 3 4 5 10 10 10 10 10 10 10 t* ω c Frithjof Anders, Institut f¨ ur theoretische Physik · Universit¨ at Bremen Concepts in Electron Correlation, Hvar, 30/9/2005 – p.11/18

  16. Charge Fluctuation in a Small Quantum Dot H>0 H=0 � ǫ kσ c † H = kσ c kσ µ kσ � σ d σ + Un d ↑ n d [ E d ( t ) − σH ( t )] d † + ↓ Ε d σ � � � c † kσ d σ + d † + V ( t ) σ c kσ time kσ change of E d : change dynamics impurity levels change of mag. field H : spin dynamics change of V : route to new equilibrium Frithjof Anders, Institut f¨ ur theoretische Physik · Universit¨ at Bremen Concepts in Electron Correlation, Hvar, 30/9/2005 – p.12/18

  17. Charge Fluctuation in a Small Quantum Dot H>0 H=0 1 (a) Γ 0 = Γ 1 µ U/ Γ 1 =2 U/ Γ 1 =8 n d (t) 0.8 U/ Γ 1 =4 U/ Γ 1 =10 U/ Γ 1 =6 U/ Γ 1 =12 0.6 U/ Γ 1 =18 Ε d 1 (b) Γ 0 = 0 time n d (t) 0.8 impurity levels 0.6 0.01 0.1 1 10 100 t* Γ 1 Charge relaxation time scale : t ch = 1 / Γ 1 Frithjof Anders, Institut f¨ ur theoretische Physik · Universit¨ at Bremen Concepts in Electron Correlation, Hvar, 30/9/2005 – p.12/18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend