quantum increasing sequences generate quantum permutation
play

Quantum Increasing Sequences generate Quantum Permutation Groups - PowerPoint PPT Presentation

Quantum Increasing Sequences generate Quantum Permutation Groups Pawe l J oziak Faculty of Mathematics and Information Technology, Warsaw University of Technology 8 VIII 2019 Universitetet i Oslo Quantum groups and their analysis I


  1. Quantum Increasing Sequences generate Quantum Permutation Groups Pawe� l J´ oziak Faculty of Mathematics and Information Technology, Warsaw University of Technology 8 VIII 2019 Universitetet i Oslo Quantum groups and their analysis � I + k , n � = S + Pawe� l J´ oziak (MiNI PW) Oslo, 8 VIII 2019 1 / 21 n

  2. Plan of the talk Quantum permutation groups and quantum increasing sequences 1 Motivations and the problem 2 The solution: � I + k , n � = S + 3 n � I + k , n � = S + Pawe� l J´ oziak (MiNI PW) Oslo, 8 VIII 2019 2 / 21 n

  3. Plan of the talk Quantum permutation groups and quantum increasing sequences 1 Motivations and the problem 2 The solution: � I + k , n � = S + 3 n � I + k , n � = S + Pawe� l J´ oziak (MiNI PW) Oslo, 8 VIII 2019 3 / 21 n

  4. Quantum permutation groups A bistochastic matrix over A is a square matrix u ∈ M n ⊗ A such that in each row and column the entries add up to 1 . n n � � u i j = 1 = u i j i =1 j =1 Definition The quantum permutation group over n -letter alphabet is a quantum n ) is the universal C ∗ of a n × n bistochastic group S + n such that C u ( S + matrix consisting of projections. This bistochastic matrix is a fundamental corepresentation: n � ∆( u i k ) = u i j ⊗ u j k j =1 � I + k , n � = S + Pawe� l J´ oziak (MiNI PW) Oslo, 8 VIII 2019 4 / 21 n

  5. Increasing sequences Fix k < n ∈ Z + . The set of length- k , [ n ] = { 1 , . . . , n } -valued increasing sequences is: � � I k , n = f : [ k ] → [ n ] : f ( i ) < f ( j ) whenever i < j Example Consider the sequence (2 < 3 < 5 < 6 < 8) ∈ I 5 , 8 . (1 , 2 , 3 , 5 , 8 , 7 , 4 , 6) Folklore/Example/Exercise Let b k , n : I k , n → S n be the above map. Then � b k , n ( I k , n ) � = S n . � I + k , n � = S + Pawe� l J´ oziak (MiNI PW) Oslo, 8 VIII 2019 5 / 21 n

  6. Increasing sequences Fix k < n ∈ Z + . The set of length- k , [ n ] = { 1 , . . . , n } -valued increasing sequences is: � � I k , n = f : [ k ] → [ n ] : f ( i ) < f ( j ) whenever i < j Example Consider the sequence (2 < 3 < 5 < 6 < 8) ∈ I 5 , 8 . (1 , 2 , 3 , 5 , 8 , 7 , 4 , 6) Folklore/Example/Exercise Let b k , n : I k , n → S n be the above map. Then � b k , n ( I k , n ) � = S n . � I + k , n � = S + Pawe� l J´ oziak (MiNI PW) Oslo, 8 VIII 2019 5 / 21 n

  7. Increasing sequences Fix k < n ∈ Z + . The set of length- k , [ n ] = { 1 , . . . , n } -valued increasing sequences is: � � I k , n = f : [ k ] → [ n ] : f ( i ) < f ( j ) whenever i < j Example Consider the sequence (2 < 3 < 5 < 6 < 8) ∈ I 5 , 8 . (1 , 2 , 3 , 5 , 8 , 7 , 4 , 6) Folklore/Example/Exercise Let b k , n : I k , n → S n be the above map. Then � b k , n ( I k , n ) � = S n . � I + k , n � = S + Pawe� l J´ oziak (MiNI PW) Oslo, 8 VIII 2019 5 / 21 n

  8. Increasing sequences Fix k < n ∈ Z + . The set of length- k , [ n ] = { 1 , . . . , n } -valued increasing sequences is: � � I k , n = f : [ k ] → [ n ] : f ( i ) < f ( j ) whenever i < j Example Consider the sequence (2 < 3 < 5 < 6 < 8) ∈ I 5 , 8 . (1 , 2 , 3 , 5 , 8 , 7 , 4 , 6) Folklore/Example/Exercise Let b k , n : I k , n → S n be the above map. Then � b k , n ( I k , n ) � = S n . � I + k , n � = S + Pawe� l J´ oziak (MiNI PW) Oslo, 8 VIII 2019 5 / 21 n

  9. Increasing sequences Fix k < n ∈ Z + . The set of length- k , [ n ] = { 1 , . . . , n } -valued increasing sequences is: � � I k , n = f : [ k ] → [ n ] : f ( i ) < f ( j ) whenever i < j Example Consider the sequence (2 < 3 < 5 < 6 < 8) ∈ I 5 , 8 . (1 , 2 , 3 , 5 , 8 , 7 , 4 , 6) Folklore/Example/Exercise Let b k , n : I k , n → S n be the above map. Then � b k , n ( I k , n ) � = S n . � I + k , n � = S + Pawe� l J´ oziak (MiNI PW) Oslo, 8 VIII 2019 5 / 21 n

  10. Increasing sequences Fix k < n ∈ Z + . The set of length- k , [ n ] = { 1 , . . . , n } -valued increasing sequences is: � � I k , n = f : [ k ] → [ n ] : f ( i ) < f ( j ) whenever i < j Example Consider the sequence (2 < 3 < 5 < 6 < 8) ∈ I 5 , 8 . (1 , 2 , 3 , 5 , 8 , 7 , 4 , 6) Folklore/Example/Exercise Let b k , n : I k , n → S n be the above map. Then � b k , n ( I k , n ) � = S n . � I + k , n � = S + Pawe� l J´ oziak (MiNI PW) Oslo, 8 VIII 2019 5 / 21 n

  11. Increasing sequences Fix k < n ∈ Z + . The set of length- k , [ n ] = { 1 , . . . , n } -valued increasing sequences is: � � I k , n = f : [ k ] → [ n ] : f ( i ) < f ( j ) whenever i < j Example Consider the sequence (2 < 3 < 5 < 6 < 8) ∈ I 5 , 8 . (1 , 2 , 3 , 5 , 8 , 7 , 4 , 6) Folklore/Example/Exercise Let b k , n : I k , n → S n be the above map. Then � b k , n ( I k , n ) � = S n . � I + k , n � = S + Pawe� l J´ oziak (MiNI PW) Oslo, 8 VIII 2019 5 / 21 n

  12. Increasing sequences Fix k < n ∈ Z + . The set of length- k , [ n ] = { 1 , . . . , n } -valued increasing sequences is: � � I k , n = f : [ k ] → [ n ] : f ( i ) < f ( j ) whenever i < j Example Consider the sequence (2 < 3 < 5 < 6 < 8) ∈ I 5 , 8 . (1 , 2 , 3 , 5 , 8 , 7 , 4 , 6) Folklore/Example/Exercise Let b k , n : I k , n → S n be the above map. Then � b k , n ( I k , n ) � = S n . � I + k , n � = S + Pawe� l J´ oziak (MiNI PW) Oslo, 8 VIII 2019 5 / 21 n

  13. Increasing sequences – matricial representation I k , n ∋ i = ( i 1 < . . . < i k ) �→ M ( i ) ∈ M n × k ( { 0 , 1 } ) � 1 if s = i t M ( i ) s , t = 0 otherwise Example Consider the sequence (2 < 3 < 5 < 6 < 8) ∈ I 5 , 8 .  0 0 0 0 0  1 0 0 0 0     0 1 0 0 0     0 0 0 0 0     0 0 1 0 0     0 0 0 1 0     0 0 0 0 0   0 0 0 0 1 � I + k , n � = S + Pawe� l J´ oziak (MiNI PW) Oslo, 8 VIII 2019 6 / 21 n

  14. Increasing sequences – matricial representation I k , n ∋ i = ( i 1 < . . . < i k ) �→ M ( i ) ∈ M n × k ( { 0 , 1 } ) � 1 if s = i t M ( i ) s , t = 0 otherwise Example Consider the sequence (2 < 3 < 5 < 6 < 8) ∈ I 5 , 8 .  0 0 0 0 0  1 0 0 0 0     0 1 0 0 0     0 0 0 0 0     0 0 1 0 0     0 0 0 1 0     0 0 0 0 0   0 0 0 0 1 � I + k , n � = S + Pawe� l J´ oziak (MiNI PW) Oslo, 8 VIII 2019 6 / 21 n

  15. Increasing sequences – matricial representation I k , n ∋ i = ( i 1 < . . . < i k ) �→ M ( i ) ∈ M n × k ( { 0 , 1 } ) � 1 if s = i t M ( i ) s , t = 0 otherwise Example Consider the sequence (2 < 3 < 5 < 6 < 8) ∈ I 5 , 8 .  0 0 0 0 0  1 0 0 0 0     0 1 0 0 0     0 0 0 0 0     0 0 1 0 0     0 0 0 1 0     0 0 0 0 0   0 0 0 0 1 � I + k , n � = S + Pawe� l J´ oziak (MiNI PW) Oslo, 8 VIII 2019 6 / 21 n

  16. Quantum increasing sequences Let k < n ∈ Z + and let C u ( I + k , n ) be the universal C ∗ -algebra generated by p i j , 1 ≤ i ≤ n , 1 ≤ j ≤ k subject to the following relations: 1 p i j p ∗ i j = p i j . 2 � n i =1 p i j = 1 for each 1 ≤ j ≤ k . 3 p i j p i ′ j ′ = 0 whenever j < j ′ and i ≥ i ′ . β k , n : C u ( S + n ) → C u ( I + k , n ) is given by: u i j �→ p i j for 1 ≤ i ≤ n , 1 ≤ j ≤ k , u i k + m �→ 0 for 1 ≤ m ≤ n − k and i < m or i > m + k , for 1 ≤ m ≤ n − k and 0 ≤ p ≤ k , m + p − 1 � u m + p k + m �→ p i p − p i +1 p +1 , i =0 where we set p 0 0 = 1 , p 0 i = p 0 i = p i k +1 = 0 for i ≥ 1. � I + k , n � = S + Pawe� l J´ oziak (MiNI PW) Oslo, 8 VIII 2019 7 / 21 n

  17. Quantum increasing sequences Let k < n ∈ Z + and let C u ( I + k , n ) be the universal C ∗ -algebra generated by p i j , 1 ≤ i ≤ n , 1 ≤ j ≤ k subject to the following relations: 1 p i j p ∗ i j = p i j . 2 � n i =1 p i j = 1 for each 1 ≤ j ≤ k . 3 p i j p i ′ j ′ = 0 whenever j < j ′ and i ≥ i ′ . β k , n : C u ( S + n ) → C u ( I + k , n ) is given by: u i j �→ p i j for 1 ≤ i ≤ n , 1 ≤ j ≤ k , u i k + m �→ 0 for 1 ≤ m ≤ n − k and i < m or i > m + k , for 1 ≤ m ≤ n − k and 0 ≤ p ≤ k , m + p − 1 � u m + p k + m �→ p i p − p i +1 p +1 , i =0 where we set p 0 0 = 1 , p 0 i = p 0 i = p i k +1 = 0 for i ≥ 1. � I + k , n � = S + Pawe� l J´ oziak (MiNI PW) Oslo, 8 VIII 2019 7 / 21 n

  18. Quantum increasing sequences Let k < n ∈ Z + and let C u ( I + k , n ) be the universal C ∗ -algebra generated by p i j , 1 ≤ i ≤ n , 1 ≤ j ≤ k subject to the following relations: 1 p i j p ∗ i j = p i j . 2 � n i =1 p i j = 1 for each 1 ≤ j ≤ k . 3 p i j p i ′ j ′ = 0 whenever j < j ′ and i ≥ i ′ . β k , n : C u ( S + n ) → C u ( I + k , n ) is given by: u i j �→ p i j for 1 ≤ i ≤ n , 1 ≤ j ≤ k , u i k + m �→ 0 for 1 ≤ m ≤ n − k and i < m or i > m + k , for 1 ≤ m ≤ n − k and 0 ≤ p ≤ k , m + p − 1 � u m + p k + m �→ p i p − p i +1 p +1 , i =0 where we set p 0 0 = 1 , p 0 i = p 0 i = p i k +1 = 0 for i ≥ 1. � I + k , n � = S + Pawe� l J´ oziak (MiNI PW) Oslo, 8 VIII 2019 7 / 21 n

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend