from multiline queues to macdonald polynomials
play

From multiline queues to Macdonald polynomials Sylvie Corteel (Paris - PowerPoint PPT Presentation

From multiline queues to Macdonald polynomials Sylvie Corteel (Paris Diderot), Olya Mandelshtam (Brown), and Lauren Williams (Harvard) olya@math.brown.edu FPSAC at Ljubljana, Slovenia July 4, 2019 1 0 3 Row 3 3 2 1 t 5 6 2 4 Row 2


  1. From multiline queues to Macdonald polynomials Sylvie Corteel (Paris Diderot), Olya Mandelshtam (Brown), and Lauren Williams (Harvard) olya@math.brown.edu FPSAC at Ljubljana, Slovenia July 4, 2019 1 0 3 Row 3 3 2 1 t 5 6 2 4 Row 2 2 2 3 2 6 1 2 7 8 3 3 6 1 2 7 8 3 4 5 Row 1 2 2 3 2 1 t 2 1 2

  2. asymmetric simple exclusion process (ASEP) the ASEP is a particle process describing particles hopping on a finite 1D lattice: 1 particle per site, at each time step any two adjacent particles may swap with some probability, with possible interactions at the boundary t 1 α t β 1 1 t t 1 γ δ 1 2 2 t 3 2 1 t 0 0 0 multispecies ASEP on a ring: now we have particles of types 0 , 1 , . . . , L with J i particles of type i , represent the type by λ = ( L J L , . . . , 1 J 1 , 0 J 0 ). (Here λ = (3 , 2 , 2 , 2 , 1 , 0 , 0 , 0)) Markov chain with states that are rearrangements of the parts of λ , where possible transitions between states are swaps of adjacent particles: 1 X Y X Y A B B A

  3. stationary probabilities 1 − 2 / 5 − t / 5 0 2 2 0 1 / 5 t / 5 1 1 · · · · · · 0 2 2 0 0 0 2 2 1 / 5 t / 5 1 1 t / 5 2 2 1 / 5 0 0 0 1 2 2 0 0 · · · · · · 2 1 / 5 t / 5 2 1 0 Pr(2 , 0 , 1 , 0 , 2) = 1 Pr(0 , 2 , 1 , 0 , 2) = 1 Z (3 + 7 t + 7 t 2 + 3 t 3 ) Z (5 + 6 t + 7 t 2 + 2 t 3 ) Pr(2 , 1 , 0 , 0 , 2) = 1 Pr(2 , 0 , 0 , 1 , 2) = 1 Z (6 + 7 t + 6 t 2 + t 3 ) Z (1 + 6 t + 7 t 2 + 6 t 3 ) Pr(2 , 1 , 2 , 0 , 0) = 1 Pr(2 , 0 , 1 , 2 , 0) = 1 Z (3 + 7 t + 7 t 2 + 3 t 3 ) Z (2 + 7 t + 6 t 2 + 5 t 3 ) (partition function) µ ˜ Z = � Pr ( µ )

  4. ASEP and Macdonald polynomials symmetric Macdonald polynomial P λ ( x 1 , . . . , x n ; q , t ) defined by: � P λ = m λ + c µλ m µ , � P λ , P µ � = 0 if λ � = µ µ<λ Schur functions s λ at q = t Hall-Littlewood polynomials at q = 0 Jack polynomials at t = q α and q → 1 partition function of the ASEP on a ring at x 1 = · · · = x n = q = 1: � ˜ P λ (1 , . . . , 1; 1 , t ) = Pr ( µ ) µ (Cantini-de Gier-Wheeler ’15)

  5. nonsymmetric Macdonald polynomials E µ ( x ; q , t ) E µ are simultaneous eigenfunctions of certain products of Demazure-Luztig operators, which are generators for the affine Hecke algebra of type A n − 1 : ( T i − t )( T i +1) = 0 , T i T i +1 T i = T i +1 T i T i +1 , T i T j = T j T i if | i − j | > 1 T i f = tf − tx i − x i +1 x i − x i +1 ( f − s i f ) Y i = T i · · · T n − 1 ω T − 1 · · · T − 1 i − 1 , Y i E µ = φ i ( µ ) E µ 1 E µ stabilize to P λ , specialize to Demazure characters at q = t = 0, specialize to key polynomials at q = t = ∞ . E µ (1 , . . . , 1; 1 , t ) = ˜ Pr ( µ ) when µ is a partition

  6. probabilities of the ASEP with multiline queues Special case: t = 0 (Ferarri-Martin ’05) A multiline queue for particles of types 0 , 1 , . . . , L on an ASEP of n locations is a ball system on a cylinder of L rows and n columns Each ball picks the first available ball to pair with in the row below, weakly to its right The state of the multiline queue is read off Row 1 row 3 3 3 row 2 3 2 3 L row 1 3 2 1 1 3 3 0 2 1 1 3 µ = n Theorem (Ferrari-Martin ’05) Pr( µ )( t = 0) is proportional to the number of multiline queues with bottom row µ .

  7. multiline queues for general t Combine a ball system with a queueing algorithm. Each ball chooses an available ball to pair with in the row below. t counts the number of available balls skipped: assign weight t total skipped (1 − t ). (1 − t ) The weight of each non-trivial pairing is t skipped 1 − t free . The state of the multiline queue is read off Row 1. j times: skipped = 3 j + 2 skipped row 3 3 3 t 2 (1 − t ) · (1 − t ) · t (1 − t ) j t 3 j +2 = t 2 (1 − t ) · 1 · 1 1 − t 3 1 − t 2 1 − t 4 (1 − t ) � (1 − t ) t 3 j +2 row 2 2 3 3 1 − t 3 t 3 (1 − t ) 4 = (1 − t 4 )(1 − t 3 )(1 − t 2 ) row 1 2 1 1 3 3 free µ = 2 1 0 1 3 3 t skipped (1 − t ) � wt( M ) = 1 − t free pairing Theorem (Martin ’18, Corteel-M-Williams ’18) Pr( µ ) = 1 � wt( M ) Z M ∈ MLQ( µ )

  8. putting the “ q ” in the queue j x # balls in col j Define the x -weight of a queue M to be x M = � j Each pairing (of type ℓ , from row r ) that wraps around contributes q ℓ − r +1 Weight for each pairing is t skipped q ( ℓ − r +1) δ wrap 1 − t 1 − q ℓ − r +1 t free x M = x 2 1 x 2 2 x 3 x 2 4 x 5 x 2 row 3 3 3 3 6 qt 2 (1 − t ) · (1 − t ) 1 − qt 2 · 1 · t (1 − t ) j t 3 j +2 q j +1 = qt 2 (1 − t ) 1 − q 2 t 4 · 1 row 2 2 3 3 3 (1 − t ) � 1 − qt 3 1 − qt 3 qt 3 (1 − t ) 4 = row 1 2 1 1 3 3 (1 − q 2 t 4 )(1 − qt 3 )(1 − qt 2 ) µ = 2 1 0 1 3 3 1 − t q ( ℓ − r +1) δ wrap wt( M )( x ; q , t ) = x M t skipped � 1 − q ℓ − r +1 t free pairings Theorem (Corteel-M-Williams ’18) � E µ ( x ; q , t ) = wt( M )( x ; q , t ) when µ is a partition M ∈ MLQ( µ ) � P λ ( x ; q , t ) = wt( M )( x ; q , t ) M ∈ MLQ( λ )

  9. proof We define f µ ( x ; q , t ) = � M ∈ MLQ( µ ) wt( M ) and show that: � f s i µ if µ i < µ i +1 T i f µ = tf µ if µ i = µ i +1 f µ 1 ,...,µ n ( x 1 , . . . , x n ) = q µ n f µ n ,µ 1 ,...,µ n − 1 ( qx n , x 1 , . . . , x n − 1 ) ( f µ and E µ are related by a triangular change of basis) thus: E µ = f µ when µ is a partition and � P λ = f µ µ

  10. Koornwinder polynomials (Macdonald of type BC) α t 1 β γ δ Koornwinder polynomial K ( n − r , 0 ,..., 0) at q = t can be computed from the partition function Z n , r ( t ; α, β, γ, δ ) of the two-species ASEP with open boundaries (Corteel-Williams 2015, Cantini 2015) first combinatorial formula for certain special cases of Koornwinder polynomials using ASEP (Corteel-M-Williams 2016) Goal: compute nonsymmetric Kornwinder polynomials through multiline queues for the multispecies ASEP with open boundaries?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend